Malaysian
Journal of Analytical Sciences Vol 23 No 6 (2019): 1107 - 1118
DOI:
10.17576/mjas-2019-2306-17
DISTRIBUTION OF
PHYTOPLANKTON IN KUANTAN PORT, MALAYSIA DURING NORTHEAST MONSOON SEASON
(Taburan Fitoplankton di Pelabuhan Kuantan,
Malaysia Semasa Musim Monsun Timur Laut)
Amir Safwan
Hamzah, Normawaty Mohammad-Noor, Aimimuliani Adam*, Zuhairi Ahmad
Department of
Marine Science, Kulliyah of Science,
International
Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
*Corresponding
author: aimiadam@iium.edu.my
Received: 30 October 2018;
Accepted: 26 September 2019
Abstract
Harmful algal
bloom (HAB) is a proliferation of phytoplankton that can produce bio toxins and
cause harm to human health, as well as the environment and the organisms
associated with it. The first case of HAB in Kuantan Port was recorded in
November 2013, followed by another outbreak in August 2014. This study aims to
investigate the phytoplankton distribution and dispersal in the Kuantan Port
during the Northeast monsoon season in order to identify the extent of the
spread of HAB, should such an event occur again. Phytoplankton samples were
taken at Kuantan Port from three levels of depth (surface, middle, and bottom)
at every hour during a period of 24 hours. Samples were preserved in Lugol’s
iodine. Chemical properties such as phosphorus, nitrate, nitrite, and ammonia
were also taken during each sampling. Phytoplankton samples were counted and
identified up to genus level. Simulation of phytoplankton dispersal in Kuantan
Port was conducted using the program MIKE 21. RMSE error was conducted to
improve accuracy between ADCP data and simulated data, and was found to be
within acceptable range. The MIKE 21 simulation showed that the algal bloom
would remain inside the port and would not spread out to the sea. Thirty-seven
taxa of phytoplankton were identified. Phytoplankton concentrations ranged
from 124 cells/L to 775 cells/L. TSS value ranged from 0.0110 mg/L to 0.0345
mg/L. Phosphorus concentration ranged from 0.075 mg/L PO4 to 3.82
mg/L PO4. Nitrate concentration ranged from 1.05 mg/L NO3-N
to 2.45 mg/L NO3-N. Nitrite concentration ranged from
0.0040 mg/L NO2-N to 0.0095 mg/L NO2-N.
Ammonia concentration ranged from 0.045 mg/L NH3-N to
0.140 mg/L NH3-N. A positive correlation was found
between phytoplankton abundance and nutrient concentration of phosphorus,
nitrate and ammonia, with a slightly negative correlation for nitrite. This
study recorded the presence of several HAB species such as Dinophysissp,
Noctillucasp, and Prorocentrum sp. The presence of these species
further indicates that several safety measures need to be considered to
safeguard public health, particularly in the coastal waters of Pahang.
Keywords: phytoplankton, harmful algal
bloom, Northeast monsoon, Kuantan Port, simulation
Abstrak
Mekar alga
berbahaya (HAB) adalah perkembangan fitoplankton yang boleh menghasilkan
biotoksin dan menyebabkan kemudaratan kepada kesihatan manusia, serta alam
sekitar dan organisma yang berkaitan dengannya. Kes pertama mekar alga
berbahaya di Pelabuhan Kuantan telah direkodkan pada November 2013, diikuti
dengan wabak lain pada bulan Ogos 2014. Kajian ini bertujuan untuk menyiasat
taburan dan penyebaran fitoplankton di Pelabuhan Kuantan semasa musim monsun
Timur Laut untuk mengenal pasti sejauh mana HAB dapat tersebar sekiranya
berlaku kejadian seperti itu lagi. Sampel fitoplankton diambil di Pelabuhan
Kuantan dari tiga tahap ke dalaman (permukaan, tengah, dan bawah) dari setiap
jam dalam tempoh 24 jam. Sampel dipelihara dalam iodin Lugol. Sifat kimia seperti
fosforus, nitrat, nitrit, dan ammonia juga diambil untuk pensampelan. Sampel
fitoplankton dikira dan dikenalpasti sehingga tahap genus. Simulasi penyebaran
fitoplankton di Pelabuhan Kuantan dijalankan dengan menggunakan program MIKE
21. Ralat punca kuasa dua telah dijalankan untuk memastikan data antara ADCP
dan simulasi adalah tepat, dan didapati jumlahnya dalam nilai berpatutan.
Simulasi menunjukkan bahawa mekar alga akan berada di dalam Pelabuhan Kuantan
dan tidak akan merebak kepada perairan persekitaran. Tiga puluh tujuh taksonomi
fitoplankton telah dikenalpasti. Kepekatan fitoplankton berkisar dari 124 sel/L
hingga 775 sel/L. Nilai TSS adalah dari 0.0110 mg/L kepada 0.0345
mg/L. Kepekatan fosforus berkisar dari 0.075 mg/L PO4 kepada 3.82 mg/L PO4. Kepekatan nitrat adalah dari 1.05 mg/L NO3-N hingga 2.45 mg/L NO3-N. Kepekatan nitrit adalah dari 0.0040 mg/L NO2-N hingga 0.0095 mg/L NO2-N. Kepekatan ammonia adalah dari 0.045 mg/L NH3-N hingga 0.140 mg/L NH3-N. Korelasi positif telah didapati antara
kelopak fitoplankton dan kepekatan fosforus, nitrat dan ammonia, serta korelasi
negatif untuk nitrit. Kajian ini mencatatkan kehadiran beberapa spesies mekar
alga berbahaya seperti Dinophysissp, Noctillucasp, dan Prorocentrum
sp. Kehadiran spesies ini terus menunjukkan bahawa beberapa langkah
keselamatan perlu dipertimbangkan untuk melindungi kesihatan awam, khususnya di
perairan pantai Pahang.
Kata kunci: fitoplankton, mekar alga berbahaya, monsun
timur laut, Pelabuhan Kuantan, simulasi
References
1.
Millman, M.,
Cherrier, C. and Ramstack, J. (2005). The seasonal succession of the
phytoplankton community in Ada Hayden Lake, North Basin, Ames, Iowa. Limnology
Laboratory, Iowa State University, Ames Iowa.
2.
Sze, P. (1998).
Biology of the Algae. 3rd
Edition. McGraw Hill Inc, USA.
3.
Van Dolah, F.
M. (2000). Diversity of Marine and Freshwater Algal Toxins. In: Botana L.,
editor. Seafood Toxicology: Pharmacology, Physiology and Detection. Marcel
Dekker, New York: pp. 19-43
4.
Scholin, C.A.,
Gulland, F., Doucette, G.J., Benson, S., Busman, M., Chavez, F.P. and Van
Dolah, F.M. (2000). Mortality of sea lions among the central California coast
linked to a toxic diatom bloom. Nature,
430: 80-84.
5.
Flewelling, L.
J., Naar, J. P., Abbott, J. P., Baden, D. G., Barros, N. B., Bossart, G. D. and
Landsberg, J.H. (2005). Brevetoxicosis: red tides and marine mammal
mortalities. Nature, 435: 755-756.
6.
Buranapratheprat,
A., Yanagi, T., Niemann, K.O., Matsumura, S. and Sojisuporn, P. (2008). Surface
chlorophyll-a dynamics in the upper Gulf of Thailand revealed by a coupled
hydrodynamic-ecosystem model. Journal of
Oceanography, 64: 639.
7.
Yoshida, T.,
Toda, T., Yusoff, F. M. and Othman, B. H. R. (2006). Seasonal variation of
zooplankton community in the coastal waters of the Straits of Malacca. Coastal Mar Sci, 30: 320-327.
8.
Mohammad-Noor,
N., Adam, A., Lim, P.T., Leaw, C.P., Lau, W.L.S., Liow, G.R., Muhammad-Bunnori,
N., Hamdan, N., Md-Nor, A., Kemat, N. and Muniandi, D. (2018). First report of
paralytic shellfish poisoning (PSP) caused by Alexandrium tamiyavanichii in Kuantan Port, Pahang, East Coast of
Malaysia. Phycological Research, 66:
37-44.
9.
Tomas, C. R.
(1997). Identifying marine phytoplankton. Florida Marine Research Institute,
Florida.
10.
Omura, T.,
Iwataki, M., Borja, V.M., Takayama, H. and Fukuyo, Y. (2012). Marine
phytoplankton of the Western Pacific. Kohseisha Kouseikaku, Japan.
11.
González, E. J. and Tundisi, J. G. (2008). Size and
dry weight of main zooplankton species in Bariri reservoir (SP, Brazil). Brazilian
Journal of Biology, 68(1): 69-75.
12.
Laws, E. A.
(2013). Evaluation of in situ phytoplankton growth rates: a synthesis of data
from varied approaches. Annual Review of Marine Science, 5:247-268.
13.
Peperzak, L.,
Colijn, F., Koeman, R., Gieskes, W. W. C and Joordens, J. C. A. (2003). Phytoplankton
siking rates in the Rhine region of freshwater influence. Journal of
Plankton Research, 25(4):
365-383.
14.
Mohammad-Noor,
N., Harun, S. N. R., Mat Lazim, Z., Mukai, Y., Mohammad, N. T. and Saad, S.
(2013). Diversity of phytoplankton in coastal water of Kuantan, Pahang,
Malaysia. Malaysian Journal of Analytical
Sciences, 32(1): 29-37.
15.
Jalal, K. C.
A., Akbar John, B. Hassan I. Sheikh, Shahbudin S., and Nor Hafiza, Y. A. A.
(2017). Study on physiochemical parameters and distribution of phytoplankton in
Kuantan Estuary, Pahang. Environment and
Ecosystem Science, 1(1):8-12.
16.
Zakem, E. J.,
Al-Haj, A., Church, M. J., Dijken, G. L., Dutkiewicz, S., Foster, S. Q. and
Follows, M. J. (2018). Ecological control of nitrite
in the upper ocean. Nature communications, 9(1): 1206.