Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 325 - 335

DOI: 10.17576/mjas-2019-2302-16

 

 

 

EFFECTS OF SILVER NANOWIRE-BASED POLYMER COMPOSITE MEMBRANE ON THE PHYSICAL AND ELECTROCHEMICAL PROPERTIES OF MALACHITE GREEN SENSOR

 

(Kesan Nanowayar Perak-Membran Komposit Polimer ke atas Sifat Fizikal dan Elektrokimia untuk Sensor Malakit Hijau)

 

Sharifah Nur Atikah Al Yahya1, Sharina Abu Hanifah1,2*, Normazida Rozi1, Nurul Huda Abd Karim1, Lee Yook Heng1

 

1Center for Advanced Materials and Renewable Resources, Faculty of Science and Technology

2Polymer Research Center (PORCE), Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  sharina@ukm.edu.my

 

 

Received: 19 August 2018; Accepted: 18 March 2019

 

 

Abstract

Malachite green is widely used in the aquaculture, food, and textile industries. However, malachite green is carcinogenic, mutagenic, and teratogenic. Therefore, a chemical sensor was developed to detect malachite green in water samples. Screen-printed carbon electrode was coated with (p(AAm-co-EMA)/Ru(bpy)32+/AgNWs to investigate its potential as a membrane for chemical sensor. The membrane was synthesized using the photopolymerization technique and characterized by fourier transform infrared (FTIR), 1H nuclear magnetic resonance (1H NMR), swelling test, field emission scanning electron microscopy/electron dispersive X-ray analysis (FESEM/EDX), thermogravimetric analysis (TGA), and cyclic voltammetry (CV). The peak of –CO in the FTIR spectra indicated that the copolymerization was successful. Furthermore, the NMR spectrum confirmed the FTIR result with the presence of peak at 4.2 ppm. Swelling test showed that p(AAm-co-EMA)/AgNWs had a lower swelling percentage than p(AAm-co-EMA) due to AgNWs filling the pores of the membrane, which can be seen in the cross section of the SEM micrograph. Thermal decomposition temperature of the membrane was around 400 °C. Cyclic voltammogram proved that the p(AAm-co-EMA)/Ru(bpy)32+/AgNWs film coated on screen-printed carbon electrode which acted as a working electrode was able to detect malachite green by showing anodic peak around 0.25 V and cathodic peak around -1.0 V.

 

Keywords:  malachite green, electrochemical sensor, photopolymerization, silver nanowires

 

Abstrak

Malakit hijau digunakan secara meluas dalam industri akuakultur, makanan dan tekstil. Walaubagaimanapun, malakit hijau bersifat karsinogenik, mutagenik dan teratogenik. Oleh itu, sensor kimia dibangunkan untuk mengesan malakit hijau dalam sampel air. Skrin bercetak elektrod karbon bersalut (p(AAm-ko-EMA)/Ru(bpy)32+/AgNWs telah dibangunkan bagi mengkaji potensinya sebagai filem untuk sensor kimia. Membran tersebut disintesis dengan menggunakan teknik fotopempolimeran dan dianalisis menggunakan spektroskopi infra merah tranformasi fourier (FTIR), 1H resonans magnetik nukleus (1H RMN), mikroskopi imbasan elektron pancaran medan/penyebaran elektron sinar-X (FESEM/EDX), analisis termogravimetri (TGA) dan voltametri siklik (CV). Puncak -CO yang hadir dalam spektrum FTIR menunjukkan kopempolimeran telah berjaya. Spektrum NMR mengesahkan spektrum FTIR dengan kehadiran puncak pada 4.2 ppm. Ujian penyerapan air pula menunjukkan peratus serapan air p(AAm-ko-EMA)/AgNWs lebih rendah berbanding p(AAm-ko-EMA) kerana AgNWs memenuhi liang–liang yang terdapat dalam filem seperti yang ditunjukkan pada mikrograf keratan rentas SEM. Penguraian terma berlaku pada suhu 400 °C. Voltamogram siklik membuktikan filem p(AAm-ko-EMA)/Ru(bpy)32+/AgNWs yang disalut atas skrin bercetak elektrod karbon bertindak sebagai elektrod kerja berupaya mengesan malakit hijau dengan menunjukkan puncak anodik sekitar 0.25 V dan puncak katodik sekitar -1.0 V.

 

Kata kunci:  malakit hijau, sensor elektrokimia, fotopempolimeran, wayar nano perak

 

References

1.       Srivastava, S., Sinha, R. and Roy, D. (2003). Toxological of malachite green. Aquatic Toxological, 66(3): 319 – 329.

2.       Nurul, H. A. P, Faridah, S., Nur, A. M. S., Gayah, A. R., Othman, M. and Fatimah, A. B. (2013). Malachite green and leuco-malachite green detection in fish using modified enzyme biosensor. Procedia Chemistry, 20: 85 – 89.

3.       Hahn, Y. B., Ahmad, R. and Tripathy, N. (2012). Chemical and biological sensors based on metal oxide nanostructures. Chemical Communication, 48: 10369 – 10385.

4.       Fatma, I. K., Safa’a, M. R., Mamdouh, R. R., Mohamed K. A. E. and Hoda, M. M. (2013). A single novel PVC membrane for dual determination of sulphadimethoxine and malachite green in aquatic environment. Arabian Journal of Chemistry, 8: 787 – 792.

5.       Faridah, S., Nurul, H. A. P., Gayah, A. R., Fatimah, A. B., Nur, A. M. S., Othman, M. and Zamri, I. (2013). Enzyme inhibition sensor for malachite green and leuco- malachite green detection in tilapia fish. Malaysian Journal of Animal Science, 16(1): 1 – 11.

6.       Kadajji, V. G. and Betageri, G.V. (2011). Water soluble polymers for pharmaceutical applications. Polymer, 3: 1972 – 2009.

7.       Gupta, I., Tomar, R. S., Nangpal, A. K. and Singhal, R. (2012). Synthesis and characterization of poly(AAm-co-BMA-co-AAc) hydrogels: Effect of acrylamide content on swelling behaviour. Designed Monomers and Polymers, 9(6): 589 – 605.

8.       Yamashita, K., Matsuki, M., Matsuyama, N., Endo, T., Tojo, H. and Kurota, H. (2000). Composition for peelable coating. European Patent Office, Japan: EP 1 087 000 A1.

9.       Rozi, N., Hanifah, S. A., Heng, L.Y. and Shyuan. L. H. (2016). Characterization of ultraviolet-photocured acrylamide based polymer. American Institute of Physics, 1784: 1 – 6.

10.   Chen, S. and Guo, X. (2015). Improving the sensitivity of elastic capacitive pressure sensors using silver nanowire mesh electrodes. IEEE Transactions on Nanotechnology, 14(4): 619 – 623.

11.   Liu, C. H. and Yu, X. (2011). Silver nano-wire based transparent, flexible, and conductive thin film. Nanoscale Research Letters, 6(1): 75.

12.   Lee, J. H., Huynh-Nguyen, B. C., Ko, E., Kim, J. H. and Seong, G. H. (2015). Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide. Sensors and Actuators B: Chemical, 224: 789 – 797.

13.   Dong, L., Gari, R. R. S., Li, Z., Craig, M. M. and Hou, S. (2009). Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon, 48: 781 – 787.

14.   Shao, J., Zhao, Y., Liu, Y. and Gao, Y. (2015). Detrermination of malachite green and leucomalachite green based on alectrochemiluminescence of Ru(bpy)32+ at grapheme oxide modified glassy carbon electrode. RSC Advances, 5: 14547.

15.   Lan, Q. F, Wang, W. C, Chen, X. H. and Chen, Z. D. (2017). A novel solid-state electrochemiluminescence sensor based on poly(3-amino-4 hydroxybenzenesulfonic acid) /Ru(bpy)3 2+ modified electrode for determination of malachite green. International Journal of Electrochemical Science, 12: 6577 – 6587.

16.   Liu, F., Yang, X., Zhao, Y. and Sun, S. (2013). Detection of malachite green and leucomalachite green based on electrochemiluminescence of mono- and bimetallic ruthenium tris-bipyridyl complexes at an Au electrode. Analytical Methods, 5(3): 660 – 665.

17.   Pavia, D. L., Lampmam, G. M., Kriz G. S. and Vyvyan J. R. (2015) Introduction to spectroscopy. Cengage Learning, USA: pp. 252 – 269.

18.   Ain, N. N. and Hanifah, S. A. (2017). Preparation and characterization of poly(acrylamide-co-ethyl methacrylate) nanocomposite membrane and its potential as chemical sensor. Journal of Polymer Science and Technology, 2(1): 56 – 61.

19.   Hu, W., Niu, X., Li, L., Yun, S., Yu, Z. and Pei, Q. (2012). Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology, 23: 1 – 9.

20.   Bihter, Z. and Mehmet, H. M. (2015). Fabrication and characterization of antibacterial polyurethane acrylate-based materials. Materials Research, 18(4): 867 – 872.

21.   Kusuma, H. S., Sholihuddin, R. I., Harsini, M. and Darmokoesoemo, H. (2016). Electrochemical degradation of malachite green dye using carbon/TiO2 electrodes. Journal of Material Environmental Sciences, 7(4): 1454 – 1460.

 




Previous                    Content                    Next