Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 325 - 335
DOI:
10.17576/mjas-2019-2302-16
EFFECTS OF
SILVER NANOWIRE-BASED POLYMER COMPOSITE MEMBRANE ON THE PHYSICAL AND
ELECTROCHEMICAL PROPERTIES OF MALACHITE GREEN SENSOR
(Kesan Nanowayar Perak-Membran Komposit Polimer ke atas
Sifat Fizikal dan Elektrokimia untuk Sensor Malakit Hijau)
Sharifah Nur
Atikah Al Yahya1, Sharina Abu Hanifah1,2*, Normazida Rozi1,
Nurul Huda Abd Karim1, Lee Yook Heng1
1Center for Advanced Materials and Renewable
Resources, Faculty of Science and Technology
2Polymer Research Center (PORCE), Faculty of Science
and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding
author: sharina@ukm.edu.my
Received: 19
August 2018; Accepted: 18 March 2019
Abstract
Malachite green is widely used in the
aquaculture, food, and textile industries. However, malachite green is
carcinogenic, mutagenic, and teratogenic. Therefore, a chemical sensor was
developed to detect malachite green in water samples. Screen-printed carbon
electrode was coated with (p(AAm-co-EMA)/Ru(bpy)32+/AgNWs
to investigate its potential as a membrane for chemical sensor. The membrane
was synthesized using the photopolymerization technique and characterized by fourier
transform infrared (FTIR), 1H nuclear magnetic resonance (1H
NMR), swelling test, field emission scanning electron microscopy/electron
dispersive X-ray analysis (FESEM/EDX), thermogravimetric analysis (TGA), and
cyclic voltammetry (CV). The peak of –CO in the FTIR spectra indicated that the
copolymerization was successful. Furthermore, the NMR spectrum confirmed the
FTIR result with the presence of peak at 4.2 ppm. Swelling test showed that
p(AAm-co-EMA)/AgNWs had a lower
swelling percentage than p(AAm-co-EMA)
due to AgNWs filling the pores of the membrane, which can be seen in the cross
section of the SEM micrograph. Thermal decomposition temperature of the
membrane was around 400 °C. Cyclic voltammogram proved that the p(AAm-co-EMA)/Ru(bpy)32+/AgNWs
film coated on screen-printed carbon electrode which acted as a working
electrode was able to detect malachite green by showing anodic peak around 0.25
V and cathodic peak around -1.0 V.
Keywords: malachite green, electrochemical sensor,
photopolymerization, silver nanowires
Abstrak
Malakit
hijau digunakan secara meluas dalam industri akuakultur, makanan dan tekstil.
Walaubagaimanapun, malakit hijau bersifat karsinogenik, mutagenik dan
teratogenik. Oleh itu, sensor kimia dibangunkan untuk mengesan malakit hijau
dalam sampel air. Skrin bercetak elektrod karbon bersalut (p(AAm-ko-EMA)/Ru(bpy)32+/AgNWs
telah dibangunkan bagi mengkaji potensinya sebagai filem untuk sensor kimia.
Membran tersebut disintesis dengan menggunakan teknik fotopempolimeran dan
dianalisis menggunakan spektroskopi infra merah tranformasi fourier (FTIR), 1H
resonans magnetik nukleus (1H RMN), mikroskopi imbasan elektron
pancaran medan/penyebaran elektron sinar-X (FESEM/EDX), analisis
termogravimetri (TGA) dan voltametri siklik (CV). Puncak -CO yang hadir dalam
spektrum FTIR menunjukkan kopempolimeran telah berjaya. Spektrum NMR mengesahkan
spektrum FTIR dengan kehadiran puncak pada 4.2 ppm. Ujian penyerapan air pula
menunjukkan peratus serapan air p(AAm-ko-EMA)/AgNWs
lebih rendah berbanding p(AAm-ko-EMA)
kerana AgNWs memenuhi liang–liang yang terdapat dalam filem seperti yang ditunjukkan
pada mikrograf keratan rentas SEM. Penguraian terma berlaku pada suhu 400 °C.
Voltamogram siklik membuktikan filem p(AAm-ko-EMA)/Ru(bpy)32+/AgNWs
yang disalut atas skrin bercetak elektrod karbon bertindak sebagai elektrod
kerja berupaya mengesan malakit hijau dengan menunjukkan puncak anodik sekitar
0.25 V dan puncak katodik sekitar -1.0 V.
Kata kunci: malakit hijau, sensor elektrokimia, fotopempolimeran,
wayar nano perak
References
1.
Srivastava,
S., Sinha, R. and Roy, D. (2003). Toxological of malachite green. Aquatic Toxological, 66(3): 319 – 329.
2.
Nurul,
H. A. P, Faridah, S., Nur, A. M. S., Gayah, A. R., Othman, M. and Fatimah, A.
B. (2013). Malachite green and leuco-malachite green detection in fish using
modified enzyme biosensor. Procedia
Chemistry, 20: 85 – 89.
3.
Hahn,
Y. B., Ahmad, R. and Tripathy, N. (2012). Chemical and biological sensors based
on metal oxide nanostructures. Chemical Communication, 48: 10369 – 10385.
4.
Fatma,
I. K., Safa’a, M. R., Mamdouh, R. R., Mohamed K. A. E. and Hoda, M. M. (2013).
A single novel PVC membrane for dual determination of sulphadimethoxine and
malachite green in aquatic environment. Arabian Journal of Chemistry, 8:
787 – 792.
5.
Faridah,
S., Nurul, H. A. P., Gayah, A. R., Fatimah, A. B., Nur, A. M. S., Othman, M.
and Zamri, I. (2013). Enzyme inhibition sensor for malachite green and leuco-
malachite green detection in tilapia fish. Malaysian Journal of Animal
Science, 16(1): 1 – 11.
6.
Kadajji,
V. G. and Betageri, G.V. (2011). Water soluble polymers for pharmaceutical
applications. Polymer, 3: 1972 – 2009.
7.
Gupta,
I., Tomar, R. S., Nangpal, A. K. and Singhal, R. (2012). Synthesis and
characterization of poly(AAm-co-BMA-co-AAc) hydrogels: Effect of acrylamide
content on swelling behaviour. Designed Monomers and Polymers, 9(6): 589
– 605.
8.
Yamashita,
K., Matsuki, M., Matsuyama, N., Endo, T., Tojo, H. and Kurota, H. (2000).
Composition for peelable coating. European Patent Office, Japan: EP 1 087 000
A1.
9.
Rozi,
N., Hanifah, S. A., Heng, L.Y. and Shyuan. L. H. (2016). Characterization of
ultraviolet-photocured acrylamide based polymer. American Institute of Physics, 1784: 1 – 6.
10.
Chen,
S. and Guo, X. (2015). Improving the sensitivity of elastic capacitive pressure
sensors using silver nanowire mesh electrodes. IEEE Transactions on
Nanotechnology, 14(4): 619 – 623.
11.
Liu,
C. H. and Yu, X. (2011). Silver nano-wire based transparent, flexible, and
conductive thin film. Nanoscale Research Letters, 6(1): 75.
12.
Lee,
J. H., Huynh-Nguyen, B. C., Ko, E., Kim, J. H. and Seong, G. H. (2015).
Fabrication of flexible, transparent silver nanowire electrodes for
amperometric detection of hydrogen peroxide. Sensors and Actuators B:
Chemical, 224: 789 – 797.
13.
Dong,
L., Gari, R. R. S., Li, Z., Craig, M. M. and Hou, S. (2009). Graphene-supported
platinum and platinum–ruthenium nanoparticles with high electrocatalytic
activity for methanol and ethanol oxidation. Carbon, 48: 781 – 787.
14.
Shao,
J., Zhao, Y., Liu, Y. and Gao, Y. (2015). Detrermination of malachite green and
leucomalachite green based on alectrochemiluminescence of Ru(bpy)32+
at grapheme oxide modified glassy carbon electrode. RSC Advances, 5: 14547.
15.
Lan,
Q. F, Wang, W. C, Chen, X. H. and Chen, Z. D. (2017). A novel solid-state electrochemiluminescence sensor based on
poly(3-amino-4 hydroxybenzenesulfonic acid) /Ru(bpy)3 2+
modified electrode for determination of malachite green. International Journal of Electrochemical Science, 12: 6577 – 6587.
16.
Liu,
F., Yang, X., Zhao, Y. and Sun, S. (2013). Detection of malachite green and
leucomalachite green based on electrochemiluminescence of mono- and bimetallic
ruthenium tris-bipyridyl complexes at an Au electrode. Analytical Methods, 5(3): 660 – 665.
17.
Pavia,
D. L., Lampmam, G. M., Kriz G. S. and Vyvyan J. R. (2015) Introduction to
spectroscopy. Cengage Learning, USA: pp. 252 – 269.
18.
Ain,
N. N. and Hanifah, S. A. (2017). Preparation and characterization of
poly(acrylamide-co-ethyl
methacrylate) nanocomposite membrane and its potential as chemical sensor. Journal of Polymer Science and Technology,
2(1): 56 – 61.
19.
Hu,
W., Niu, X., Li, L., Yun, S., Yu, Z. and Pei, Q. (2012). Intrinsically
stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate
composites. Nanotechnology, 23: 1 – 9.
20.
Bihter,
Z. and Mehmet, H. M. (2015). Fabrication and characterization of antibacterial
polyurethane acrylate-based materials. Materials
Research, 18(4): 867 – 872.
21.
Kusuma,
H. S., Sholihuddin, R. I., Harsini, M. and Darmokoesoemo, H. (2016).
Electrochemical degradation of malachite green dye using carbon/TiO2
electrodes. Journal of Material
Environmental Sciences, 7(4): 1454 – 1460.