Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 290 - 299

DOI: 10.17576/mjas-2019-2302-13

 

 

 

SYNTHESIS AND CHARACTERIZATION OF SILICA-SILVER CORE-SHELL NANOPARTICLES

 

(Sintesis dan Pencirian Silika-Perak Nanopartikel Teras-Cengkerang)

 

Nur Kamilah Mohd, Wan Mohd Afiq Wan Mohd Khalik, Alyza A. Azmi*

 

School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  alyza.azzura@umt.edu.my

 

 

Received: 10 February 2019; Accepted: 30 March 2019

 

 

Abstract

Silica-silver core-shell nanoparticles have received tremendous interests in various applications compared to the bare silver nanoparticles due to several important features such as exhibit higher surface area, the existence of a synergistic effect between the core and the shell, stabilize silver nanoparticles against aggregation, and easily control their properties by the changing shell structure and shell geometry. Due to this significance, this study was conducted to synthesis and characterization of silica-silver core-shell nanoparticles using the facile method without any surface modification needed.  In the synthesis route, silica particles have been synthesis based on the Stӧber method. The deposition of nanoscales silver layer on silica surface mainly involves the electrostatic attraction between [Ag(NH3)2]+ions and silanol groups, and the addition of polyvinylpyrrolidone (PVP) has been acted as a reducing agent and stabilizing agent. UV-Vis spectroscopy evidenced the absorption of surface plasmon resonance (SPR) of silver nanoparticles in the range 380-450 nm.  The crystallinity of silica-silver core-shell nanoparticles showed the face-centered cubic (fcc) structure by X-ray powder diffraction (XRD) analysis.  The spherical shape of silica particles with an average 200-220 nm in size has been determined using scanning electron microscope (SEM).  The high resolution-transmission electron microscope (HR-TEM) images visualized the successful formation of spherical silver nanoparticles on the silica surface with the average of size 10-40 nm. X-ray photoelectron spectroscopy analysis revealed the elemental compositions exist in the silica-silver core-shell nanoparticles. The synthesized silica-silver core-shell nanoparticles will be used as a potential catalyst in dye treatment application in the future work.

 

Keywords:  core-shell, nanoparticles, silica-silver core-shell, deposited, Stӧber method

 

Abstrak

Silika-perak nanopartikel teras-cengkerang telah menarik minat yang besar dalam pelbagai aplikasi berbanding dengan nanopartikel perak disebabkan oleh beberapa kelebihan seperti permukaan kawasannya lebih tinggi, kewujudan kesan sinergi di antara teras dan cengkerang, mengelakkan pengumpulan nanopartikel perak dan memudahkan untuk mengawal ciri-ciri yang dikendaki dalam nanopartikel teras-cengkerang dengan mengubah morfologi dan geometri partikel cengkerang. Sintesis dan pencirian silika-perak nanopartikel teras-cengkerang telah dilakukan tanpa sebarang pengubahsuaian terhadap permukaan partikel. Proses sintesis melibatkan penghasilan zarah silika menggunakan kaedah Stӧber. Pemendapan lapisan perak nano pada permukaan silika  melibatkan tarikan elektrostatik antara kumpulan ion [Ag(NH3)2]+ dan kumpulan silanol, dan penambahan polivinilpirolidon (PVP) akan bertindak sebagai agen penurunan dan agen penstabilan. Pencirian silika-perak nanopartikel teras-cengkerang menggunakan spektroskopi ultra lembayung tampak (UV-Vis) telah menunjukkan penyerapan resonansi plasmon permukaan (SPR) nanopartikel perak dalam lingkungan 380 - 450 nm. Kehabluran silika-perak nanopartikel teras-cengkerang menunjukkan struktur berpusatkan kubik berpusat (fcc) dengan menggunakan pembelauan sinar-X (XRD). Zarah silika berbentuk sfera dengan saiz 200 nm ditentukan dengan menggunakan mikroskop imbasan elektron (SEM). Saiz perak yang telah didepositkan pada permukaan silika telah diukur menggunakan mikroskop transmisi elektron beresolusi tinggi (HR-TEM) dengan ukuran 10-40 nm. Analisis spektrometer fotoelektron sinar-X (XPS) telah mendedahkan komposisi unsur yang ada di dalam silika-perak nanopartikel teras-cengkerang. Nanopartikel teras-petala silika-perak akan digunakan sebagai potensi rawatan pewarna pada masa akan datang.     

 

Kata kunci:  teras-cengkerang, nanopartikel, silika-perak nanopartikel teras-cengkerang, deposit, kaedah Stӧber

 

References

1.       Nischala, K., Rao, T. N. and Hebalkar, N. (2011). Silica–silver core–shell particles for antibacterial textile application. Colloids and Surfaces B: Biointerfaces82(1): 203 – 208.

2.       Wang, X., He, B., Hu, Z., Zeng, Z. and Han, S. (2014). Current advances in precious metal core–shell catalyst design. Science and Technology of Advanced Materials15(4): 043502.

3.       Xu, C., Su, R., Wang, Z., Wang, Y., Zhang, D., Wang, J., J., Bian, J., Wu, C., Lou, X. and Yang, Y. (2019). Tuning the microstructure of BaTiO3@SiO2 core-shell nanoparticles for high energy storage composite ceramics. Journal of Alloys and Compounds784: 173 – 181.

4.       Kamaruddin, S. and Stephan, D. (2011). The preparation of silica–titania core–shell particles and their impact as an alternative material to pure nano-titania photocatalysts. Catalysis Today161(1): 53 – 58.

5.       Pati, S. S., Singh, L. H., Oliveira, A. C. and Garg, V. K. (2015). Chitosan functionalized Fe3O4@ Au core-shell nanomaterials for targeted drug delivery. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering9(6):  670 – 673.

6.       Zhu, Z., Kao, C. T. and Wu, R. J. (2014). A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Applied Surface Science320: 348 – 355.

7.       Azizi, M. A. H., Dzakaria, N., Isahak, W. N. R. W. and Yarmo, M. A. (2017). Effect of nickel on bimetallic nanoalloy catalyst for hydrogen generation. Malaysian Journal of Analytical Sciences21(4): 901 – 906.

8.       Abdullah, H., Ismail, N. A., Yaakob, Z., Khan, M. R. and Rahim, S. A. (2017). CeO2-TiO2 for photoreduction of Co2 to methanol under visible light: effect of ceria loading. Malaysian Journal of Analytical Sciences21(1): 166 – 172.

9.       Mohd, N. K., Wee, N. N. A. N. and Azmi, A. A. (2017). Green synthesis of silica nanoparticles using sugarcane bagasse. In AIP Conference Proceedings, 1885(1): 020123.

10.    Ghorbani, F., Sanati, A. M., and Maleki, M. (2015). Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environmental Studies of Persian Gulf2(1), 56 – 65.

11.    San, N. O., Kurşungöz, C., Tümtaş, Y., Yaşa, Ö., Ortac, B. and Tekinay, T. (2014). Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology17: 29 – 35.

12.    Qadri, S. B., Gorzkowski, E. P., Imam, M. A., Fliflet, A., Goswami, R., Kim, H., Caldwell, J. D., Klemm, F. and Rath, B. B (2013). Production of nanoscale particles and nanorods of SiC from sorghum leaves. Industrial Crops and Products51: 158 – 162.

13.    Landage, S. M., Kulkarni, S. G. and Ubarhande, D. P. (2012). Synthesis and application of silica nanoparticles on cotton to impart superhydrophobicity. International Journal of Engineering Research and Technology, 1(5): 1 – 7.

14.    Kalele, S. A., Ashtaputre, S. S., Hebalkar, N. Y., Gosavi, S. W., Deobagkar, D. N., Deobagkar, D. D. and Kulkarni, S. K. (2005). Optical detection of antibody using silica–silver core–shell particles. Chemical Physics Letters404(1-3): 136 – 141.

15.    Mansa, R. F., Sipaut, C. S., Rahman, I. A., Yusof, N. S. M. and Jafarzadeh, M. (2016). Preparation of glycine–modified silica nanoparticles for the adsorption of malachite green dye. Journal of Porous Materials23(1): 35 – 46.

16.    Chang, H., Park, J. H. and Jang, H. D. (2008). Flame synthesis of silica nanoparticles by adopting two-fluid nozzle spray. Colloids and Surfaces A: Physicochemical and Engineering Aspects313: 140 –144.

17.    Koźlecki, T., Polowczyk, I., Bastrzyk, A. and Sawiński, W. (2016). Improved synthesis of nanosized silica in water-in-oil microemulsions. Journal of Nanoparticles2016: 1 – 9.

18.    Monshizadeh, M., Rajabi, M., Ahmadi, M. H. and Mohammadi, V. (2015). Synthesis and characterization of nano SiO2 from rice husk ash by precipitation method. 3rd National Conference on Modern Researches in Chemistry and Chemical Engineering: pp. 1 – 4.

19.    Gholami, T., Salavati-Niasari, M., Bazarganipour, M. and Noori, E. (2013). Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand. Superlattices and Microstructures61: 33 – 41.

20.    Kitsou, I., Panagopoulos, P., Maggos, T., Arkas, M. and Tsetsekou, A. (2018). Development of SiO2@ TiO2 core-shell nanospheres for catalytic applications. Applied Surface Science441: 223 – 231.

21.    Kandpal, D., Kalele, S. and Kulkarni, S. K. (2007). Synthesis and characterization of silica-gold core-shell (SiO2@ Au) nanoparticles. Pramana69(2): 277 – 283.

22.    Gac, W., Zawadzki, W., Słowik, G., Sienkiewicz, A. and Kierys, A. (2018). Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous and Mesoporous Materials272: 79 – 91.

23.    Zienkiewicz-Strzałka, M., Pasieczna-Patkowska, S., Kozak, M. and Pikus, S. (2013). Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent. Applied Surface Science266: 337 –343.

24.    Jankiewicz, B. J., Jamiola, D., Choma, J. and Jaroniec, M. (2012). Silica–metal core–shell nanostructures. Advances in Colloid and Interface Science170(1-2): 28 – 47.

25.    Atkins, P., Overton, T., Rourke, J., Weller, M. and Armstrong, F. (2010). Inorganic Chemistry. Oxford. New York : pp. 659.

26.    Tzounis, L., Contreras-Caceres, R., Schellkopf, L., Jehnichen, D., Fischer, D., Cai, C., Uhlmann, P. and Stamm, M. (2014). Controlled growth of Ag nanoparticles decorated onto the surface of SiO2 spheres: a nanohybrid system with combined SERS and catalytic properties. RSC Advances4(34): 17846 – 17855.

27.    Ghosh, C. R. and Paria, S. (2011). Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews112(4): 2373 – 2433.

28.    Postolache, P., Petrescu, V., Dumitrascu, D. D., Rimbu, C., Vrînceanu, N. and Cipaian, C. R. (2016). Research regarding a correlation core–shell morphology–thermal stability of silica–silver nanoparticles. Chemical Engineering Communications203(5): 649 – 659.

29.    Din, L. B., Mie, R., Samsudin, M. W., Ahmad, A. and Ibrahim, N. (2015). Biomimetic synthesis of silver nanoparticles using the lichen Ramalina dumeticola and the antibacterial activity. Malaysian Journal of Analytical Sciences19(2): 369 – 376.

30.    Chen, K. H., Pu, Y. C., Chang, K. D., Liang, Y. F., Liu, C. M., Yeh, J. W., Shih, H. C. and Hsu, Y. J. (2012). Ag-nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties. The Journal of Physical Chemistry C, 116(35): 19039 – 19045.

31.    Deng, Z., Chen, M. and Wu, L. (2007). Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. The Journal of Physical Chemistry C111(31): 11692 – 11698.

32.    Das, S. K., Khan, M. M. R., Parandhaman, T., Laffir, F., Guha, A. K., Sekaran, G. and Mandal, A. B. (2013). Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale5(12): 5549 – 5560.

33.    Sakthisabarimoorthi, A., Dhas, S. M. B. and Jose, M. (2017). Fabrication and nonlinear optical investigations of SiO2@Ag core-shell nanoparticles. Materials Science in Semiconductor Processing71: 69 – 75.

 

 




Previous                    Content                    Next