Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 290 - 299
DOI:
10.17576/mjas-2019-2302-13
SYNTHESIS AND CHARACTERIZATION OF SILICA-SILVER CORE-SHELL NANOPARTICLES
(Sintesis dan Pencirian
Silika-Perak Nanopartikel Teras-Cengkerang)
Nur Kamilah Mohd, Wan Mohd Afiq Wan Mohd Khalik, Alyza
A. Azmi*
School of Marine
and Environmental Sciences,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: alyza.azzura@umt.edu.my
Received: 10
February 2019; Accepted: 30 March 2019
Abstract
Silica-silver core-shell nanoparticles
have received tremendous interests in various applications compared to the bare
silver nanoparticles due to several important features such as exhibit higher
surface area, the existence of a synergistic effect between the core and the
shell, stabilize silver nanoparticles against aggregation, and easily control
their properties by the changing shell structure and shell geometry. Due to
this significance, this study was conducted to synthesis and characterization
of silica-silver core-shell nanoparticles using the facile method without any
surface modification needed. In the
synthesis route, silica particles have been synthesis based on the Stӧber
method. The deposition of nanoscales silver layer on silica surface mainly
involves the electrostatic attraction between [Ag(NH3)2]+ions
and silanol groups, and the addition of polyvinylpyrrolidone (PVP) has been acted
as a reducing agent and stabilizing agent. UV-Vis spectroscopy evidenced the
absorption of surface plasmon resonance (SPR) of silver nanoparticles in the
range 380-450 nm. The crystallinity of
silica-silver core-shell nanoparticles showed the face-centered cubic (fcc)
structure by X-ray powder diffraction (XRD) analysis. The spherical shape of silica particles with
an average 200-220 nm in size has been determined using scanning electron
microscope (SEM). The high
resolution-transmission electron microscope (HR-TEM) images visualized the
successful formation of spherical silver nanoparticles on the silica surface
with the average of size 10-40 nm. X-ray photoelectron spectroscopy analysis
revealed the elemental compositions exist in the silica-silver core-shell
nanoparticles. The synthesized silica-silver core-shell nanoparticles will be
used as a potential catalyst in dye treatment application in the future work.
Keywords: core-shell, nanoparticles, silica-silver
core-shell, deposited, Stӧber method
Abstrak
Silika-perak nanopartikel teras-cengkerang telah menarik minat yang besar dalam pelbagai aplikasi berbanding dengan nanopartikel perak disebabkan oleh beberapa kelebihan seperti permukaan kawasannya lebih tinggi, kewujudan kesan sinergi di antara teras dan cengkerang, mengelakkan pengumpulan nanopartikel perak dan memudahkan untuk mengawal ciri-ciri yang dikendaki dalam nanopartikel teras-cengkerang dengan mengubah morfologi dan geometri partikel cengkerang. Sintesis dan pencirian silika-perak nanopartikel teras-cengkerang telah dilakukan tanpa sebarang pengubahsuaian terhadap permukaan partikel. Proses sintesis melibatkan penghasilan zarah silika menggunakan kaedah Stӧber. Pemendapan lapisan perak nano pada permukaan silika melibatkan tarikan elektrostatik antara kumpulan ion [Ag(NH3)2]+ dan kumpulan silanol, dan penambahan polivinilpirolidon (PVP) akan bertindak sebagai agen penurunan dan agen penstabilan. Pencirian silika-perak nanopartikel teras-cengkerang menggunakan spektroskopi ultra lembayung tampak (UV-Vis) telah menunjukkan penyerapan resonansi plasmon permukaan (SPR) nanopartikel perak dalam lingkungan 380 - 450 nm. Kehabluran silika-perak nanopartikel teras-cengkerang menunjukkan struktur berpusatkan kubik berpusat (fcc) dengan menggunakan pembelauan sinar-X (XRD). Zarah silika berbentuk sfera dengan saiz 200 nm ditentukan dengan menggunakan mikroskop imbasan elektron (SEM). Saiz perak yang telah didepositkan pada permukaan silika telah diukur menggunakan mikroskop transmisi elektron beresolusi tinggi (HR-TEM) dengan ukuran 10-40 nm. Analisis spektrometer fotoelektron sinar-X (XPS) telah mendedahkan komposisi unsur yang ada di dalam silika-perak nanopartikel teras-cengkerang. Nanopartikel teras-petala silika-perak akan digunakan sebagai potensi rawatan pewarna pada masa akan datang.
Kata kunci: teras-cengkerang, nanopartikel, silika-perak nanopartikel
teras-cengkerang, deposit, kaedah Stӧber
References
1.
Nischala, K., Rao, T. N. and Hebalkar, N. (2011).
Silica–silver core–shell particles for antibacterial textile application. Colloids
and Surfaces B: Biointerfaces, 82(1):
203 – 208.
2.
Wang, X., He, B., Hu, Z., Zeng, Z. and Han, S. (2014).
Current advances in precious metal core–shell catalyst design. Science and
Technology of Advanced Materials, 15(4): 043502.
3.
Xu, C., Su, R., Wang, Z., Wang, Y., Zhang, D., Wang, J., J.,
Bian, J., Wu, C., Lou, X. and Yang, Y. (2019). Tuning the microstructure of
BaTiO3@SiO2 core-shell nanoparticles for high energy
storage composite ceramics. Journal of Alloys and Compounds, 784: 173 – 181.
4.
Kamaruddin, S. and Stephan, D. (2011). The preparation of silica–titania
core–shell particles and their impact as an alternative material to pure
nano-titania photocatalysts. Catalysis Today, 161(1): 53 – 58.
5.
Pati, S. S., Singh, L. H., Oliveira, A. C. and Garg, V. K.
(2015). Chitosan functionalized Fe3O4@ Au core-shell
nanomaterials for targeted drug delivery. World Academy of Science,
Engineering and Technology, International Journal of Chemical, Molecular,
Nuclear, Materials and Metallurgical Engineering, 9(6): 670 – 673.
6.
Zhu, Z., Kao, C. T. and Wu, R. J. (2014). A highly sensitive
ethanol sensor based on Ag@TiO2 nanoparticles at room
temperature. Applied Surface Science, 320: 348 – 355.
7.
Azizi, M. A. H., Dzakaria, N., Isahak, W. N. R. W. and Yarmo,
M. A. (2017). Effect of nickel on bimetallic nanoalloy catalyst for hydrogen
generation. Malaysian Journal of Analytical Sciences, 21(4): 901 – 906.
8.
Abdullah, H., Ismail, N. A., Yaakob, Z., Khan, M. R. and
Rahim, S. A. (2017).
CeO2-TiO2 for
photoreduction of Co2 to methanol under visible light: effect of
ceria loading. Malaysian Journal of Analytical Sciences, 21(1): 166 – 172.
9.
Mohd, N. K., Wee, N. N. A. N. and Azmi, A. A. (2017). Green
synthesis of silica nanoparticles using sugarcane bagasse. In AIP
Conference Proceedings, 1885(1): 020123.
10.
Ghorbani, F., Sanati, A. M., and Maleki, M. (2015).
Production of silica nanoparticles from rice husk as agricultural waste by
environmental friendly technique. Environmental Studies of Persian Gulf, 2(1), 56 – 65.
11.
San, N. O., Kurşungöz, C., Tümtaş, Y., Yaşa, Ö., Ortac, B. and
Tekinay, T. (2014). Novel one-step synthesis of silica nanoparticles from
sugarbeet bagasse by laser ablation and their effects on the growth of
freshwater algae culture. Particuology, 17: 29 – 35.
12.
Qadri, S. B., Gorzkowski, E. P., Imam, M. A., Fliflet, A.,
Goswami, R., Kim, H., Caldwell, J. D., Klemm, F. and Rath, B. B (2013).
Production of nanoscale particles and nanorods of SiC from sorghum
leaves. Industrial Crops and Products, 51: 158 – 162.
13.
Landage,
S. M., Kulkarni, S. G. and Ubarhande, D. P. (2012). Synthesis and application
of silica nanoparticles on cotton to impart superhydrophobicity. International Journal of Engineering
Research and Technology, 1(5): 1 – 7.
14.
Kalele, S. A., Ashtaputre, S. S., Hebalkar, N. Y., Gosavi, S.
W., Deobagkar, D. N., Deobagkar, D. D. and Kulkarni, S. K. (2005). Optical
detection of antibody using silica–silver core–shell particles. Chemical
Physics Letters, 404(1-3):
136 – 141.
15.
Mansa, R. F., Sipaut, C. S., Rahman, I. A., Yusof, N. S. M. and
Jafarzadeh, M. (2016). Preparation of glycine–modified silica nanoparticles for
the adsorption of malachite green dye. Journal of Porous Materials, 23(1): 35 – 46.
16.
Chang, H., Park, J. H. and Jang, H. D. (2008). Flame
synthesis of silica nanoparticles by adopting two-fluid nozzle spray. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 313: 140 –144.
17.
Koźlecki, T., Polowczyk, I., Bastrzyk, A. and Sawiński, W.
(2016). Improved synthesis of nanosized silica in water-in-oil
microemulsions. Journal of Nanoparticles, 2016: 1 – 9.
18.
Monshizadeh, M., Rajabi, M., Ahmadi, M. H. and Mohammadi, V.
(2015). Synthesis and characterization of nano SiO2 from rice husk
ash by precipitation method. 3rd National Conference on Modern
Researches in Chemistry and Chemical Engineering: pp. 1 – 4.
19.
Gholami, T., Salavati-Niasari, M., Bazarganipour, M. and
Noori, E. (2013). Synthesis and characterization of spherical silica
nanoparticles by modified Stöber process assisted by organic ligand. Superlattices
and Microstructures, 61:
33 – 41.
20.
Kitsou, I., Panagopoulos, P., Maggos, T., Arkas, M. and
Tsetsekou, A. (2018). Development of SiO2@ TiO2
core-shell nanospheres for catalytic applications. Applied Surface
Science, 441: 223 – 231.
21.
Kandpal, D., Kalele, S. and Kulkarni, S. K. (2007). Synthesis
and characterization of silica-gold core-shell (SiO2@ Au)
nanoparticles. Pramana, 69(2):
277 – 283.
22.
Gac, W., Zawadzki, W., Słowik, G., Sienkiewicz, A. and
Kierys, A. (2018). Nickel catalysts supported on silica microspheres for CO2
methanation. Microporous and Mesoporous Materials, 272: 79 – 91.
23.
Zienkiewicz-Strzałka, M., Pasieczna-Patkowska, S., Kozak, M. and
Pikus, S. (2013). Silver nanoparticles incorporated onto ordered mesoporous
silica from Tollen's reagent. Applied Surface Science, 266: 337 –343.
24.
Jankiewicz, B. J., Jamiola, D., Choma, J. and Jaroniec, M.
(2012). Silica–metal core–shell nanostructures. Advances in Colloid and
Interface Science, 170(1-2):
28 – 47.
25.
Atkins, P., Overton, T., Rourke, J., Weller, M. and
Armstrong, F. (2010). Inorganic Chemistry. Oxford. New York : pp. 659.
26.
Tzounis, L., Contreras-Caceres, R., Schellkopf, L.,
Jehnichen, D., Fischer, D., Cai, C., Uhlmann, P. and Stamm, M. (2014).
Controlled growth of Ag nanoparticles decorated onto the surface of SiO2
spheres: a nanohybrid system with combined SERS and catalytic properties. RSC
Advances, 4(34): 17846
– 17855.
27.
Ghosh, C. R. and Paria, S. (2011). Core/shell nanoparticles: Classes,
properties, synthesis mechanisms, characterization, and applications. Chemical
Reviews, 112(4): 2373
– 2433.
28.
Postolache, P., Petrescu, V., Dumitrascu, D. D., Rimbu, C.,
Vrînceanu, N. and Cipaian, C. R. (2016). Research regarding a correlation
core–shell morphology–thermal stability of silica–silver nanoparticles. Chemical
Engineering Communications, 203(5):
649 – 659.
29.
Din, L. B., Mie, R., Samsudin, M. W., Ahmad, A. and Ibrahim,
N. (2015). Biomimetic synthesis of silver nanoparticles using the lichen
Ramalina dumeticola and the antibacterial activity. Malaysian Journal
of Analytical Sciences, 19(2):
369 – 376.
30.
Chen, K. H., Pu, Y. C., Chang, K. D., Liang, Y. F., Liu, C.
M., Yeh, J. W., Shih, H. C. and Hsu, Y. J. (2012). Ag-nanoparticle-decorated
SiO2 nanospheres exhibiting remarkable plasmon-mediated
photocatalytic properties. The Journal of
Physical Chemistry C, 116(35): 19039 – 19045.
31.
Deng, Z., Chen, M. and Wu, L. (2007). Novel method to
fabricate SiO2/Ag composite spheres and their catalytic,
surface-enhanced Raman scattering properties. The Journal of Physical
Chemistry C, 111(31):
11692 – 11698.
32.
Das, S. K., Khan, M. M. R., Parandhaman, T., Laffir, F.,
Guha, A. K., Sekaran, G. and Mandal, A. B. (2013). Nano-silica fabricated with
silver nanoparticles: antifouling adsorbent for efficient dye removal,
effective water disinfection and biofouling control. Nanoscale, 5(12): 5549 – 5560.
33.
Sakthisabarimoorthi, A., Dhas, S. M. B. and Jose, M. (2017).
Fabrication and nonlinear optical investigations of SiO2@Ag
core-shell nanoparticles. Materials Science in Semiconductor Processing, 71: 69 – 75.