Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 667 - 675

DOI: 10.17576/mjas-2018-2204-13

 

 

 

EFFECT OF INCORPORATING PURPLE-FLESHED SWEET POTATO IN BISCUIT ON ANTIOXIDANT CONTENT, ANTIOXIDANT CAPACITY AND COLOUR CHARACTERISTICS

 

(Kesan Penambahan Keledek Ungu ke dalam Biskut Terhadap Kandungan Antioksida, Kapasiti Antioksidan dan Ciri-Ciri Warna)

 

Azni A. Aziz1,3, Alyani Mohd Padzil1, Ida Idayu Muhamad1,2*

 

1Bioprocess and Polymer Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering

2Cardiac Biomaterials Cluster, IJN-UTM Cardiovascular Engineering Center, School of Biomedical Engineering

 and Health Sciences, Faculty of Engineering

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

3Technology and Natural Resources Department, Faculty of Applied Sciences and Technology,

Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia

 

*Corresponding author:  idaidayu@utm.my

 

 

Received: 16 April 2017; Accepted: 7 April 2018

 

 

Abstract

Purple flesh sweet potato (PFSP) is considered to be a nutritionally rich crop. It also contain abundant amount of anthocyanin pigment which possess disease preventive properties. This work aims to study the effect of incorporating different form of processed PFSP, namely fresh, flour, and paste in biscuit formulation. Analysis was performed on the total phenolic, total anthocyanin content, antioxidant capacity, and colour characteristics. The analyses were made on samples, before and after the incorporation of PFSP in the biscuit. PFSP flour was prepared by directly using hot air-drying at 65 ºC for 18 hours while PFSP paste was steamed for 30 minutes at 100 ºC. The PFSP fresh contained total anthocyanin content at 21.40 mg CyE/100 g fw, and the content increased when processed into the form of flour and paste approximately at 38.90 mg CyE/100 g fw and 52.48 mg CyE/100 g fw, respectively. All forms of processed PFSP enhanced the purple colour when incorporated into the biscuit formulation. The experimental results showed that biscuit added with PFSP lost 15–36% of antioxidant capacity. Based on these findings, all forms of PFSP can be a natural colourant, a potential functional food ingredient, and can become a superior source for the production of foods with health benefits. 

 

Keywords:  purple-fleshed sweet potato, biscuit, phenolic, anthocyanin, antioxidant capacity, colour

 

Abstrak

Keledek ungu (PFSP) dianggap sebagai tanaman kaya khasiat. Ia juga mengandungi sejumlah besar pigmen antosianin yang mempunyai sifat pencegah penyakit. Kajian ini bertujuan untuk mengkaji kesan penambahan PFSP yang diproses dalam beberapa bentuk berbeza iaitu mentah, tepung, dan pes ke dalam formulasi biskut. Analisis dilakukan terhadap jumlah fenolik, jumlah kandungan antosianin, kapasiti antioksidan, dan ciri-ciri warna. Analisis kajian dijalankan terhadap sampel, sebelum dan selepas PFSP dimasukkan ke dalam biskut. Tepung PFSP disediakan dengan menggunakan pengeringan udara panas pada suhu 65 ºC selama 18 jam manakala pes PFSP dikukus selama 30 minit pada suhu 100 ºC. PFSP mentah mengandungi jumlah kandungan antosianin sebanyak 21.40 mg CyE/100 g fw, dan kandungannya meningkat apabila diproses ke dalam bentuk tepung dan pes iaitu masing-masing sebanyak 38.90 mg CyE/100g fw dan 52.48 mg CyE/100g fw. Kesemua bentuk PFSP yang diproses meningkatkan warna ungu apabila dimasukkan ke dalam formulasi biskut. Keputusan eksperimen menunjukkan biskut yang ditambah PFSP hilang kapasiti antioksidan sebanyak 15–36%. Berdasarkan dapatan ini, semua bentuk PFSP dapat menjadi pewarna semula jadi, berpotensi sebagai bahan makanan berfungsi, dan boleh menjadi sumber penting untuk pengeluaran makanan dengan manfaat kesihatan.

 

Kata kunci:  keledek ungu, biskut, fenolik, antosianin, kapasiti antioksidan, warna

 

References

1.       Leksrisompong, P. P., Whitson, M. E., Truong, V. D. and Drake, M. A. (2012). Sensory attributes and consumer acceptance of sweet potato cultivars with varying flesh colour. Journal of Sensory Studies, 27 (1): 59-69.

2.       Kim, J. M., Park, S. J., Lee, C. S., Ren, C., Kim, S. S. and Shin, M. (2011). Functional properties of different korean sweet potato varieties. Food Science and Biotechnology, 20(6): 1501-1507.

3.       Teow, C. C., Truong, V. D., McFeeters, R. F., Thompson, R. L., Pecota, K. V. and Yencho, G. C. (2007). Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry, 103(3): 829-838.

4.       Wrolstad, R. (2006). Anthocyanin pigments-bioactivity and coloring properties. Journal of Food Science, 69(5): 419-425.

5.       Suda, I., Oki, T., Masuda, M., Kobayashi, M., Nishiba, Y. and Furuta, S. (2003). Physiological functionality of purple-fleshed sweet potatoes containing anthocyanins and their utilization in foods. Japan Agricultural Research Quarterly, 37(3): 167-173.

6.       Greene, J. L. and Bovell-Benjamin, A. C. (2004). Macroscopic and sensory evaluation of bread supplemented with sweet-potato flour. Journal of Food Science, 69(4): 167-173.

7.       Huang, Y. C., Chang, Y. H. and Shao, Y. Y. (2006). Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chemistry, 98(3): 529-538.

8.       Ruttarattanamongkol, K., Chittrakorn, S., Weerawatanakorn, M. and Dangpium, N. (2015). Effect of drying conditions on properties, pigments and antioxidant activity retentions of pretreated orange and purple-fleshed sweet potato flours. Journal of Food Science and Technology, 53(4): 1811-1822.

9.       Wu, K. L., Sung, W. C. and Yang, C. H. (2009). Characteristics of dough and bread as affected by the incorporation of sweet potato paste in the formulation. Journal of Marine Science and Technology, 17(1): 13-22.

10.    Steed, L. E. and Truong, V. D. (2008). Anthocyanin content, antioxidant activity, and selected physical properties of flowable purple-fleshed sweetpotato purees. Journal of Food Science, 73(5): 215-221.

11.    Ginting, E. and Yulifianti, R. (2015). Characteristics of noodle prepared from orange-fleshed sweet potato, and domestic wheat flour. Procedia Food Science, 3: 289-302.

12.    Chan, K. W., Khong, N. M. H., Iqbal, S., Umar, I. M. and Ismail, M. (2012). Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH. International Journal of Molecular Sciences, 13: 8987 – 8997.

13.    Siró, I., Kápolna, E., Kápolna, B. and Lugasi, A. (2008). Functional food. product development, marketing and consumer acceptance- A review. Appetite, 51(3): 456-467.

14.    RodriguezSaona, L. E. and Wrolstad, R. E. (2001). Extraction, isolation, and purification of anthocyanins. In Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc. F1.1.1 – F1.1.11.

15.    Waterhouse, A. L. (2003). Determination of total phenolics. In Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc. I1.1.1 – I1.1.8.

16.    Giusti, M. M. and Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc. F1.2.1 – F1.2.13.

17.    Benzie, I. F. F. and Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239 (1): 70-76.

18.    Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25-30.

19.    Yang, J., Chen, J., Zhao, Y. and Mao, L. (2010). Effects of drying processes on the antioxidant properties in sweet potatoes. Agricultural Sciences in China, 9(10): 1522-1529.

20.    Takenaka, M., Nanayama, K., Isobe, S. and Murata, M. (2006). Changes in caffeic acid derivatives in sweet potato (Ipomoea batatas L.) during cooking and processing. Bioscience, Biotechnology, and Biochemistry, 70(1): 172-177.

21.    Giusti, M. M. and Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3): 217-225.

22.    Pasqualone, A., Bianco, A. M., Paradiso, V. M., Summo, C., Gambacorta, G., Caponio, F. and Blanco, A. (2015). Production and characterization of functional biscuits obtained from purple wheat. Food Chemistry, 180: 64-70.

23.    Tang, Y., Cai, W. and Xu, B. (2015). Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Science and Human Wellness, 4 (3): 123-132.

24.    Kano, M., Takayanagi, T., Harada, K., Makino, K. and Ishikawa, F. (2005). Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar ayamurasaki. Bioscience, Biotechnology, and Biochemistry, 69(5): 979-988.

25.    Oki, T., Masuda, M., Furuta, S., Nishiba, Y., Terahara, N. and Suda, I. (2002). Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. Journal of Food Science, 67(5): 1752-1756.

26.    Philpott, M., Gould, K. S., Lim, C. and Ferguson, L. R. (2004). In situ and in vitro antioxidant activity of sweetpotato anthocyanins. Journal of Agricultural and Food Chemistry, 52(6): 1511-1513.

27.    Truong, V. D., Deighton, N., Thompson, R. T., McFeeters, R. F., Dean, L. O., Pecota, K. V. and Yencho, G. C. (2010). Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS. Journal of Agricultural and Food Chemistry, 58(1): 404-410.

28.    Yang, J. and Gadi, R. L. (2008). Effects of steaming and dehydration on anthocyanins, antioxidant activity, total phenols and color characteristics of purple-fleshed sweet potatoes (Ipomoea batatas). American Journal of Food Technology, 3(4): 224-234.

 




Previous                    Content                    Next