Malaysian
Journal of Analytical Sciences Vol 22 No 4 (2018): 667 - 675
DOI:
10.17576/mjas-2018-2204-13
EFFECT OF INCORPORATING PURPLE-FLESHED SWEET POTATO IN BISCUIT ON
ANTIOXIDANT CONTENT, ANTIOXIDANT CAPACITY AND COLOUR CHARACTERISTICS
(Kesan Penambahan Keledek Ungu ke dalam Biskut Terhadap Kandungan
Antioksida, Kapasiti Antioksidan dan Ciri-Ciri Warna)
Azni A. Aziz1,3, Alyani Mohd Padzil1, Ida Idayu
Muhamad1,2*
1Bioprocess and
Polymer Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering
2Cardiac
Biomaterials Cluster, IJN-UTM Cardiovascular Engineering
Center, School of Biomedical Engineering
and Health
Sciences, Faculty of Engineering
Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
3Technology and
Natural Resources Department, Faculty of Applied Sciences and Technology,
Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
*Corresponding
author: idaidayu@utm.my
Received:
16 April 2017; Accepted: 7 April 2018
Abstract
Purple flesh sweet potato (PFSP) is considered to be a nutritionally
rich crop. It also contain abundant amount of anthocyanin pigment which possess
disease preventive properties. This work aims to study the effect of
incorporating different form of processed PFSP, namely fresh, flour, and paste
in biscuit formulation. Analysis was performed on the total phenolic, total
anthocyanin content, antioxidant capacity, and colour characteristics. The
analyses were made on samples, before and after the incorporation of PFSP in
the biscuit. PFSP flour was prepared by directly using hot air-drying at 65 ºC
for 18 hours while PFSP paste was steamed for 30 minutes at 100 ºC. The PFSP
fresh contained total anthocyanin content at 21.40 mg CyE/100 g fw, and the
content increased when processed into the form of flour and paste approximately
at 38.90 mg CyE/100 g fw and 52.48 mg CyE/100 g fw, respectively. All forms of
processed PFSP enhanced the purple colour when incorporated into the biscuit
formulation. The experimental results showed that biscuit added with PFSP lost
15–36% of antioxidant capacity. Based on these findings, all forms of PFSP can
be a natural colourant, a potential functional food ingredient, and can become
a superior source for the production of foods with health benefits.
Keywords: purple-fleshed
sweet potato, biscuit, phenolic, anthocyanin, antioxidant capacity, colour
Abstrak
Keledek ungu
(PFSP) dianggap sebagai tanaman kaya khasiat. Ia juga mengandungi sejumlah
besar pigmen antosianin yang mempunyai sifat pencegah penyakit. Kajian ini
bertujuan untuk mengkaji kesan penambahan PFSP yang diproses dalam beberapa
bentuk berbeza iaitu mentah, tepung, dan pes ke dalam formulasi biskut.
Analisis dilakukan terhadap jumlah fenolik, jumlah kandungan antosianin,
kapasiti antioksidan, dan ciri-ciri warna. Analisis kajian dijalankan terhadap
sampel, sebelum dan selepas PFSP dimasukkan ke dalam biskut. Tepung PFSP
disediakan dengan menggunakan pengeringan udara panas pada suhu 65 ºC selama 18
jam manakala pes PFSP dikukus selama 30 minit pada suhu 100 ºC. PFSP mentah
mengandungi jumlah kandungan antosianin sebanyak 21.40 mg CyE/100 g fw, dan
kandungannya meningkat apabila diproses ke dalam bentuk tepung dan pes iaitu
masing-masing sebanyak 38.90 mg CyE/100g fw dan 52.48 mg CyE/100g fw. Kesemua
bentuk PFSP yang diproses meningkatkan warna ungu apabila dimasukkan ke dalam
formulasi biskut. Keputusan eksperimen menunjukkan biskut yang ditambah PFSP
hilang kapasiti antioksidan sebanyak 15–36%. Berdasarkan dapatan ini, semua
bentuk PFSP dapat menjadi pewarna semula jadi, berpotensi sebagai bahan makanan
berfungsi, dan boleh menjadi sumber penting untuk pengeluaran makanan dengan
manfaat kesihatan.
Kata kunci: keledek
ungu, biskut, fenolik, antosianin, kapasiti antioksidan, warna
References
1.
Leksrisompong, P. P., Whitson, M. E., Truong, V. D. and
Drake, M. A. (2012). Sensory attributes and consumer acceptance of sweet potato
cultivars with varying flesh colour. Journal of Sensory Studies, 27 (1):
59-69.
2.
Kim, J. M., Park, S. J., Lee, C. S., Ren, C., Kim, S. S. and
Shin, M. (2011). Functional properties of different korean sweet potato
varieties. Food Science and Biotechnology, 20(6): 1501-1507.
3.
Teow, C. C., Truong, V. D., McFeeters, R. F., Thompson, R.
L., Pecota, K. V. and Yencho, G. C. (2007). Antioxidant activities, phenolic
and β-carotene contents of sweet potato genotypes with varying flesh colours. Food
Chemistry, 103(3): 829-838.
4.
Wrolstad, R. (2006). Anthocyanin pigments-bioactivity and
coloring properties. Journal of Food Science, 69(5): 419-425.
5.
Suda, I., Oki, T., Masuda, M., Kobayashi, M., Nishiba, Y. and
Furuta, S. (2003). Physiological functionality of purple-fleshed sweet potatoes
containing anthocyanins and their utilization in foods. Japan Agricultural
Research Quarterly, 37(3): 167-173.
6.
Greene, J. L. and Bovell-Benjamin, A. C. (2004). Macroscopic
and sensory evaluation of bread supplemented with sweet-potato flour. Journal
of Food Science, 69(4): 167-173.
7.
Huang, Y. C., Chang, Y. H. and Shao, Y. Y. (2006). Effects of
genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food
Chemistry, 98(3): 529-538.
8.
Ruttarattanamongkol, K., Chittrakorn, S., Weerawatanakorn, M.
and Dangpium, N. (2015). Effect of drying conditions on properties, pigments
and antioxidant activity retentions of pretreated orange and purple-fleshed
sweet potato flours. Journal of Food Science and Technology, 53(4):
1811-1822.
9.
Wu, K. L., Sung, W. C. and Yang, C. H. (2009).
Characteristics of dough and bread as affected by the incorporation of sweet
potato paste in the formulation. Journal of Marine Science and Technology,
17(1): 13-22.
10.
Steed, L. E. and Truong, V. D. (2008). Anthocyanin content,
antioxidant activity, and selected physical properties of flowable
purple-fleshed sweetpotato purees. Journal of Food Science, 73(5):
215-221.
11.
Ginting, E. and Yulifianti, R. (2015). Characteristics of
noodle prepared from orange-fleshed sweet potato, and domestic wheat flour. Procedia
Food Science, 3: 289-302.
12.
Chan, K. W., Khong, N. M. H., Iqbal, S., Umar, I. M. and
Ismail, M. (2012). Antioxidant property enhancement of sweet potato flour under
simulated gastrointestinal pH. International Journal of Molecular Sciences,
13: 8987 – 8997.
13.
Siró, I., Kápolna, E., Kápolna, B. and Lugasi, A. (2008).
Functional food. product development, marketing and consumer acceptance- A
review. Appetite, 51(3): 456-467.
14.
Rodriguez‐Saona, L. E. and Wrolstad, R. E. (2001). Extraction, isolation, and
purification of anthocyanins. In Current Protocols in Food Analytical Chemistry.
Hoboken, NJ, USA: John Wiley & Sons, Inc. F1.1.1 – F1.1.11.
15.
Waterhouse, A. L. (2003). Determination of total phenolics.
In Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA:
John Wiley & Sons, Inc. I1.1.1 – I1.1.8.
16.
Giusti, M. M. and Wrolstad, R. E. (2001). Characterization
and measurement of anthocyanins by UV-visible spectroscopy. In Current
Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley &
Sons, Inc. F1.2.1 – F1.2.13.
17.
Benzie, I. F. F. and Strain, J. J. (1996). The ferric
reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP
assay. Analytical Biochemistry, 239 (1): 70-76.
18.
Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995).
Use of a free radical method to evaluate antioxidant activity. LWT - Food
Science and Technology, 28(1): 25-30.
19.
Yang, J., Chen, J., Zhao, Y. and Mao, L. (2010). Effects of
drying processes on the antioxidant properties in sweet potatoes. Agricultural
Sciences in China, 9(10): 1522-1529.
20.
Takenaka, M., Nanayama, K., Isobe, S. and Murata, M. (2006).
Changes in caffeic acid derivatives in sweet potato (Ipomoea batatas L.)
during cooking and processing. Bioscience, Biotechnology, and Biochemistry,
70(1): 172-177.
21.
Giusti, M. M. and Wrolstad, R. E. (2003). Acylated anthocyanins
from edible sources and their applications in food systems. Biochemical
Engineering Journal, 14(3): 217-225.
22.
Pasqualone, A., Bianco, A. M., Paradiso, V. M., Summo, C.,
Gambacorta, G., Caponio, F. and Blanco, A. (2015). Production and
characterization of functional biscuits obtained from purple wheat. Food
Chemistry, 180: 64-70.
23.
Tang, Y., Cai, W. and Xu, B. (2015). Profiles of phenolics,
carotenoids and antioxidative capacities of thermal processed white, yellow,
orange and purple sweet potatoes grown in Guilin, China. Food Science and
Human Wellness, 4 (3): 123-132.
24.
Kano, M., Takayanagi, T., Harada, K., Makino, K. and
Ishikawa, F. (2005). Antioxidative activity of anthocyanins from purple sweet
potato, Ipomoera batatas cultivar ayamurasaki. Bioscience,
Biotechnology, and Biochemistry, 69(5): 979-988.
25.
Oki, T., Masuda, M., Furuta, S., Nishiba, Y., Terahara, N.
and Suda, I. (2002). Involvement of anthocyanins and other phenolic compounds
in radical-scavenging activity of purple-fleshed sweet potato cultivars. Journal
of Food Science, 67(5): 1752-1756.
26.
Philpott, M., Gould, K. S., Lim, C. and Ferguson, L. R.
(2004). In situ and in vitro antioxidant activity of
sweetpotato anthocyanins. Journal of Agricultural and Food Chemistry, 52(6):
1511-1513.
27.
Truong, V. D., Deighton, N., Thompson, R. T., McFeeters, R.
F., Dean, L. O., Pecota, K. V. and Yencho, G. C. (2010). Characterization of
anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by
HPLC-DAD/ESI-MS/MS. Journal of Agricultural and Food Chemistry, 58(1):
404-410.
28.
Yang, J. and Gadi, R. L. (2008). Effects of steaming and
dehydration on anthocyanins, antioxidant activity, total phenols and color
characteristics of purple-fleshed sweet potatoes (Ipomoea batatas). American
Journal of Food Technology, 3(4): 224-234.