Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 274 - 289

DOI: 10.17576/mjas-2019-2302-12

 

 

 

PYROLYTIC KEY INDICATORS OF BURNT PORCINE TISSUE IN THE PRESENCE OF PETROL UNDER OUTDOOR CONDITIONS

 

(Analisis Penunjuk Utama Pirolitik Tisu Khinzir Yang Dibakar Dengan Kehadiran Gangguan Petrol Dalam Keadaan Terbuka)

 

Gina Francesca Gabriel, Jennifer Shalini Jheyeaaseelan, Dheephikha Kumaraguru, Khairul Osman, Noor Hazfalinda Hamzah*

 

Forensic Science Programme, Faculty of Health Sciences,

Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

*Corresponding author:  raviera@yahoo.com

 

 

Received: 15 January 2018; Accepted: 31 January 2019

 

 

Abstract

This study was conducted to provide a chemical fingerprint of burnt porcine tissue (Sus domesticus spp.) in the presence of petrol using gas chromatography-mass spectrometry (GC-MS). The pyrolysis process was followed through using two methods; in the first method, the sample was allowed to continuously burn until auto-ignition was attained and the flames self-extinguished, and in the second method, upon auto-ignition of the sample, the flame was extinguished by placing an empty lid over the tin after the size of the flame reduced to burning within the tin. Six replicates of each method were burnt outdoors and underwent passive headspace extraction using activated carbon tablets. The activated carbon tablets together with the samples were then incubated in an oven for 16 hours at 80 °C. After the incubation process, the tablets were desorbed in 1 mL of pentane and were introduced into the GC-MS. Toluene was detected from the first method whereas 1,2,4-trimethylbenzene was detected from the second method. Pyrolytic key indicators of burnt porcine tissue in the presence of petrol were not detected under the specific environmental conditions implemented in this study. The volume of petrol together with the duration and temperature during the burning process, and the source of flame, played crucial roles in the generation and detection of pyrolytic products obtained during the fire.

 

Keywords:    porcine bone, petrol, pyrolytic products, activated carbon tablet, gas chromatography-mass spectrometry

 

Abstrak

Kajian ini dijalankan untuk menjana data cap jari kimia bagi tisu khinzir (Sus domesticus spp.) yang dibakar dengan kehadiran petrol menggunakan kromatografi gas-spektrometri jisim (GC-MS). Proses pirolisis telah dijalankan mengikut dua kaedah; kaedah pertama dilakukan dengan membiarkan sampel terbakar dan apinya terpadam dengan sendiri, dan kaedah kedua, nyalaan api yang terbentuk daripada nyalaan auto pencucuhan telah dipadamkan dengan meletakkan penutup tin ke atas permukaan tin apabila saiz nyalaan api tersebut mengecil dan hanya tertumpu di dalam tin. Setiap sampel daripada kedua-dua kaedah telah dibakar secara terbuka dan menjalani proses penyerapan menggunakan penjerapan karbon teraktif dalam bentuk tablet. Proses pembakaran ini telah direplikasi sebanyak enam kali. Penjerapan karbon teraktif bersama sampel diinkubasi di dalam ketuhar selama 16 jam  pada  suhu  80 °C.  Selepas proses inkubasi, tablet tersebut dinyaherap  dalam 1 mL  pentana  dan  dianalisa menggunakan GC-MS. Toluena dikesan daripada kaedah pertama manakala 1,2,4-trimetilbenzena dikesan daripada kaedah kedua. Petunjuk utama pirolitik tisu khinzir tidak dapat dikesan di bawah keadaan persekitaran spesifik yang diaplikasikan dalam kajian ini. Di samping itu, didapati bahawa isipadu petrol yang dibakar, tempoh pembakaran dan suhu yang dicapai semasa proses pembakaran serta sumber api memainkan peranan yang penting dalam menentukan kehadiran petunjuk utama produk pirolitik yang terhasil daripada sesuatu proses pembakaran.

 

Kata kunci:      tulang khinzir, petrol, produk utama pirolitik, penjerapan karbon teraktif, kromatografi gas-spektrometri jisim

 

References

1.     Saferstein, R. (2017). Criminalistics: An introduction to forensic science. 12th edition. Pearson Education: pp. 524.

2.     Adelson, L. (1955). Role of the pathologist in arson investigation. Journal of Criminal Law, Criminology & Police Science, 45(6): 760 – 768.

3.     Hine, G. A. (2004). Fire scene investigation: An introduction for chemists, in analysis and interpretation of fire scene evidence, K. G. F. Jose R. Almirall, CRC Press LLC: pp. 46.

4.     Pert, A. D., Baron, M. G. and Birkett, J. W. (2006). Review of analytical techniques for arson residues. Journal of Forensic Sciences, 51(5): 1033 - 1049.

5.     Jackowski, J. (1997). The incidence of ignitable liquid residues in fire debris as determined by a sensitive and comprehensive analytical scheme. Journal of Forensic Sciences, 42(5): 828 - 832.

6.     Rumiza, A. R., Khairul, O., Zuha, R. M. and Heo, C. C. (2010). An observation on the decomposition process of gasoline-ingested monkey carcasses in a secondary forest in malaysia. Tropical Biomedicines, 27(3): 373 - 383.

7.     Stauffer, E. (2003). Concept of pyrolysis for fire debris analysts. Science & Justice, 43(1): 29 - 40.

8.     Dehaan, J. D., Brien, D. J. and Large, R. (2004). Volatile organic compounds from the combustion of human and animal tissue. Science and Justice, 44(4): 223 - 236.

9.     Gabriel, G. F. (2015). The analysis and discrimination of pyrolysis products from biological and non-biological sources. Thesis of Doctor Philosophy Degree, University of Strathclyde.

10.  Mclellan, S. A. (1999). An investigation of the volatiles produced from pyrolysis of the body. Thesis of Master Degree, University of Strathclyde.

11.  Agu, K. (2011). Investigation of the thermal degradation products of bon. Thesis of Doctor Philosophy Degree, University of Strathclyde.

12.  Gabriel, G. F., Ismail, A., Abdul Ghani, A. A., Osman, K. and Noor Hazfalinda, H. (2017). The analysis of thermal decomposition products generated from porcine tissues exposed to outdoor burning conditions. Malaysian Journal of Analytical Sciences, 21(3): 585 - 596.

13.  Dehaan, J. D., Taormina, E. I. and Brien, D. J. (2017). Detection and characterization of volatile organic compounds from burned human and animal remains in fire debris. Science & Justice, 57(2): 118 - 127.

14.  Purevsuren, B., Avid, B., Gerelmaa, T., Davaajav, Y., Morgan, T. J., Herod, A. A. and Kandiyoti, R. (2004). The characterisation of tar from the pyrolysis of animal bones. Fuel, 83(7): 799 - 805.

15.  Almirall, J. R. and Furton, K. G. (2004). Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris. Journal of Analytical and Applied Pyrolysis, 71 (1): 51 - 67.

16.  Cavanagh, K., Pasquier, E. D. and Lennard, C. (2002). Background interference from car carpets—the evidential value of petrol residues in cases of suspected vehicle arson. Forensic Science International, 125(1): 22 - 36.

17.  Wineman, P. L. and Keto, R. O. (1994). Target-compound method for the analysis of accelerant residues in fire debris. Analytica Chimica Acta, 288(1): 97 - 110.

18.  Lennard, C. J., Tristan Rochaix, V., Margot, P. and Huber, K. (1995). A GC–MS database of target compound chromatograms for the identification of arson accelerants. Science & Justice, 35(1): 19 - 30.

19.  Sferopoulos, R. (2013). Test burning of carpet and foam and potential interferences in identifying petrol in arson investigation by gas chromatography/ mass spectrometry. Thesis of Doctor Philosophy Degree, Victoria University.

20.  American Society of Testing and Materials E1618-06 (2006). ASTM E1618-06 standard test method for ignitable liquid residues in extracts from fire debris samples by Gas Chromatography-Mass Spectrometry. American Society of Testing and Materials. 11.

21.  Rus Din, R. D., Zainal Ariffin, S. H., Senafi, S., Abdul Wahab, R. M. and Zainol Abidin, I. Z. (2014). Molecular mitochondrial DNA and radiographic approaches for human archaeology identification. Sains Malaysiana, 43(10): 1523 - 1535.

22.  Arora, A., Gupta, P., Kapoor, S. and Mahajan, S. (2010). An analytic review of burnt bones in medicolegal sciences. Journal of Punjab Academy of Forensic Medicine & Toxicology, 10: 31 - 36.

23.  American Society for Testing and Materials E1412-07 (2012). Astm E1412-07 standard practice for separation of ignitable liquid residues from fire debris samples by passive headspace concentration with activated charcoal. American Society for Testing and Materials.

24.  Paczkowski, S. and Schütz, S. (2011). Post-mortem volatiles of vertebrate tissue. Applied Microbiology and Biotechnology, 91(4): 917 - 935.

25.  Dehaan, J. D. and Nurbakhsh, S. (2001). Sustained combustion of an animal carcass and its implications for the consumption of human bodies in fires. Journal of Forensic Sciences, 46(5): 1076 -1081.

26.  Dehaan, J. D. (2012). Sustained combustion of bodies: Some observations. Journal of Forensic Sciences, 57(6): 1578 - 1584.

27.  The National Fire Protection Association (2017). NFPA 921: Guide for fire and explosion investigations. Massachusetts: The National Fire Protection Association.

28.  Welker, J. R. and Sliepcevich, C. M. (1966). Burning rates and heat transfer from wind-blown flames. Fire Technology, 2(3): 211 - 218.

29.  Chee Hau, T., Amir Hamzah, S. P. A., Khairul, O. and Noor Hazfalinda, H. (2013). Post mortem changes in relation to different types of clothing. Malaysian Journal of Pathology, 35(1): 77 - 85.

30.  John D. Dehaan, D. J. I. (2011). Kirk's Fire Investigation. 8th edition. Pearson.

31.  Osman, K., Noor Hazfalinda, H. and Gabriel, G. F. (2018). Penyiasatan forensik: Pengecaman identiti penjenayah. Penerbit Universiti Kebangsaan Malaysia: pp. 103.

 




Previous                    Content                    Next