Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 274 - 289
DOI:
10.17576/mjas-2019-2302-12
PYROLYTIC
KEY INDICATORS OF BURNT PORCINE TISSUE IN THE PRESENCE OF PETROL UNDER OUTDOOR
CONDITIONS
(Analisis Penunjuk Utama Pirolitik Tisu Khinzir Yang Dibakar Dengan Kehadiran Gangguan Petrol Dalam
Keadaan Terbuka)
Gina
Francesca Gabriel, Jennifer Shalini Jheyeaaseelan, Dheephikha Kumaraguru,
Khairul Osman, Noor
Hazfalinda Hamzah*
Forensic Science
Programme, Faculty of Health Sciences,
Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
*Corresponding
author: raviera@yahoo.com
Received:
15 January 2018; Accepted: 31 January 2019
Abstract
This
study was conducted to provide a chemical fingerprint of burnt porcine tissue (Sus domesticus spp.) in
the presence of petrol using gas chromatography-mass spectrometry
(GC-MS). The pyrolysis process was followed through using two methods; in the
first method, the sample was allowed to continuously burn until auto-ignition was
attained and the flames self-extinguished, and in the second method, upon
auto-ignition of the sample, the flame was extinguished by placing an empty lid
over the tin after the size of the flame reduced to burning within the tin. Six
replicates of each method were burnt outdoors and underwent passive headspace
extraction using activated carbon tablets. The activated carbon tablets
together with the samples were then incubated in an oven for 16 hours at 80 °C.
After the incubation process, the tablets were desorbed in 1 mL of pentane and
were introduced into the GC-MS. Toluene was detected from the first method
whereas 1,2,4-trimethylbenzene was detected from the second method. Pyrolytic
key indicators of burnt porcine tissue in the presence of petrol were not
detected under the specific environmental conditions implemented in this study.
The volume of petrol together with the duration and temperature during the
burning process, and the source of flame, played crucial roles in the
generation and detection of pyrolytic products obtained during the fire.
Keywords: porcine bone, petrol, pyrolytic
products, activated carbon tablet, gas chromatography-mass spectrometry
Abstrak
Kajian
ini dijalankan untuk menjana data cap jari kimia bagi tisu khinzir (Sus domesticus spp.) yang dibakar dengan
kehadiran petrol menggunakan kromatografi gas-spektrometri jisim (GC-MS).
Proses pirolisis telah dijalankan mengikut dua kaedah; kaedah pertama dilakukan
dengan membiarkan sampel terbakar dan apinya terpadam dengan sendiri, dan
kaedah kedua, nyalaan api yang terbentuk daripada nyalaan auto pencucuhan telah
dipadamkan dengan meletakkan penutup tin ke atas permukaan tin apabila saiz
nyalaan api tersebut mengecil dan hanya tertumpu di dalam tin. Setiap sampel
daripada kedua-dua kaedah telah dibakar secara terbuka dan menjalani proses
penyerapan menggunakan penjerapan karbon teraktif dalam bentuk tablet. Proses
pembakaran ini telah direplikasi sebanyak enam kali. Penjerapan karbon teraktif
bersama sampel diinkubasi di dalam ketuhar selama 16 jam pada suhu
80 °C. Selepas proses inkubasi, tablet tersebut
dinyaherap dalam 1 mL pentana dan dianalisa
menggunakan GC-MS. Toluena dikesan daripada kaedah pertama manakala
1,2,4-trimetilbenzena dikesan daripada kaedah kedua. Petunjuk utama pirolitik
tisu khinzir tidak dapat dikesan di bawah keadaan persekitaran spesifik yang diaplikasikan
dalam kajian ini. Di samping itu, didapati bahawa isipadu petrol yang dibakar,
tempoh pembakaran dan suhu yang dicapai semasa proses pembakaran serta sumber
api memainkan peranan yang penting dalam menentukan kehadiran petunjuk utama
produk pirolitik yang terhasil daripada sesuatu proses pembakaran.
Kata kunci: tulang
khinzir, petrol, produk utama pirolitik, penjerapan karbon teraktif,
kromatografi gas-spektrometri jisim
References
1. Saferstein,
R. (2017). Criminalistics: An introduction to forensic science. 12th
edition. Pearson Education: pp. 524.
2. Adelson, L. (1955). Role of the pathologist in arson
investigation. Journal of Criminal Law,
Criminology & Police Science, 45(6): 760 – 768.
3. Hine, G. A. (2004). Fire scene investigation: An introduction
for chemists, in analysis and interpretation of fire scene evidence, K. G. F.
Jose R. Almirall, CRC Press LLC: pp. 46.
4. Pert, A. D., Baron, M. G. and Birkett, J. W. (2006). Review of
analytical techniques for arson residues. Journal
of Forensic Sciences, 51(5): 1033 - 1049.
5. Jackowski, J. (1997). The incidence of ignitable liquid residues
in fire debris as determined by a sensitive and comprehensive analytical
scheme. Journal of Forensic Sciences,
42(5): 828 - 832.
6. Rumiza, A. R., Khairul, O., Zuha, R. M. and Heo, C. C. (2010).
An observation on the decomposition process of gasoline-ingested monkey
carcasses in a secondary forest in malaysia. Tropical Biomedicines, 27(3): 373 - 383.
7. Stauffer, E. (2003). Concept of pyrolysis for fire debris
analysts. Science & Justice,
43(1): 29 - 40.
8. Dehaan, J. D., Brien, D. J. and Large, R. (2004). Volatile
organic compounds from the combustion of human and animal tissue. Science and Justice, 44(4): 223 - 236.
9. Gabriel, G. F. (2015). The analysis and discrimination of
pyrolysis products from biological and non-biological sources. Thesis of Doctor
Philosophy Degree, University of Strathclyde.
10. Mclellan, S. A. (1999). An investigation of the volatiles produced
from pyrolysis of the body. Thesis of Master Degree, University of Strathclyde.
11. Agu, K. (2011). Investigation of the thermal degradation products
of bon. Thesis of Doctor Philosophy Degree, University of Strathclyde.
12. Gabriel, G. F., Ismail, A., Abdul Ghani, A. A., Osman, K. and Noor
Hazfalinda, H. (2017). The analysis of thermal decomposition products generated
from porcine tissues exposed to outdoor burning conditions. Malaysian Journal of Analytical Sciences,
21(3): 585 - 596.
13. Dehaan, J. D., Taormina, E. I. and Brien, D. J. (2017). Detection
and characterization of volatile organic compounds from burned human and animal
remains in fire debris. Science &
Justice, 57(2): 118 - 127.
14. Purevsuren, B., Avid, B., Gerelmaa, T., Davaajav, Y., Morgan, T.
J., Herod, A. A. and Kandiyoti, R. (2004). The characterisation of tar from the
pyrolysis of animal bones. Fuel,
83(7): 799 - 805.
15. Almirall, J. R. and Furton, K. G. (2004). Characterization of
background and pyrolysis products that may interfere with the forensic analysis
of fire debris. Journal of Analytical and
Applied Pyrolysis, 71 (1): 51 - 67.
16. Cavanagh, K., Pasquier, E. D. and Lennard, C. (2002). Background
interference from car carpets—the evidential value of petrol residues in cases
of suspected vehicle arson. Forensic
Science International, 125(1): 22 - 36.
17. Wineman, P. L. and Keto, R. O. (1994). Target-compound method for
the analysis of accelerant residues in fire debris. Analytica Chimica Acta, 288(1): 97 - 110.
18. Lennard, C. J., Tristan Rochaix, V., Margot, P. and Huber, K.
(1995). A GC–MS database of target compound chromatograms for the
identification of arson accelerants. Science
& Justice, 35(1): 19 - 30.
19. Sferopoulos, R. (2013). Test burning of carpet and foam and
potential interferences in identifying petrol in arson investigation by gas
chromatography/ mass spectrometry. Thesis of Doctor Philosophy Degree, Victoria
University.
20. American Society of Testing and Materials E1618-06 (2006). ASTM
E1618-06 standard test method for ignitable liquid residues in extracts from
fire debris samples by Gas Chromatography-Mass Spectrometry. American Society
of Testing and Materials. 11.
21. Rus Din, R. D., Zainal Ariffin, S. H., Senafi, S., Abdul Wahab, R.
M. and Zainol Abidin, I. Z. (2014). Molecular mitochondrial DNA and
radiographic approaches for human archaeology identification. Sains Malaysiana, 43(10): 1523 - 1535.
22. Arora, A., Gupta, P., Kapoor, S. and Mahajan, S. (2010). An
analytic review of burnt bones in medicolegal sciences. Journal of Punjab Academy of Forensic Medicine & Toxicology,
10: 31 - 36.
23. American Society for Testing and Materials E1412-07 (2012). Astm
E1412-07 standard practice for separation of ignitable liquid residues from
fire debris samples by passive headspace concentration with activated charcoal.
American Society for Testing and Materials.
24. Paczkowski, S. and Schütz, S. (2011). Post-mortem volatiles of
vertebrate tissue. Applied Microbiology
and Biotechnology, 91(4): 917 - 935.
25. Dehaan, J. D. and Nurbakhsh, S. (2001). Sustained combustion of an
animal carcass and its implications for the consumption of human bodies in
fires. Journal of Forensic Sciences,
46(5): 1076 -1081.
26. Dehaan, J. D. (2012). Sustained combustion of bodies: Some
observations. Journal of Forensic Sciences,
57(6): 1578 - 1584.
27. The National Fire Protection Association (2017). NFPA 921: Guide
for fire and explosion investigations. Massachusetts: The National Fire
Protection Association.
28. Welker, J. R. and Sliepcevich, C. M. (1966). Burning rates and heat
transfer from wind-blown flames. Fire
Technology, 2(3): 211 - 218.
29. Chee Hau, T., Amir Hamzah, S. P. A., Khairul, O. and Noor
Hazfalinda, H. (2013). Post mortem changes in relation to different types of
clothing. Malaysian Journal of Pathology,
35(1): 77 - 85.
30. John D. Dehaan, D. J. I. (2011). Kirk's Fire Investigation. 8th
edition. Pearson.
31. Osman, K., Noor Hazfalinda, H. and Gabriel, G. F. (2018).
Penyiasatan forensik: Pengecaman identiti penjenayah. Penerbit Universiti Kebangsaan
Malaysia: pp. 103.