Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1084 - 1089

DOI: 10.17576/mjas-2018-2206-19

 

 

 

THE INFLUENCE OF GROWTH TEMPERATURE ON THE PROPERTIES OF ZINC OXIDE BY THERMAL OXIDATION

 

(Kesan Suhu Pertumbuhan Ke Atas Sifat-Sifat Zink Oksida Menggunakan Pengoksidaan Haba)

 

Nuraini Abdullah*, Noor Mazni Ismail, Dewan Muhammad Nuruzzaman

 

Faculty of Manufacturing Engineering,

Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

 

*Corresponding author:  nuraini.abdullah89@yahoo.com

 

 

Received: 2 April 2018; Accepted: 31 July 2018

 

 

Abstract

Zinc  thin  films were  successfully  deposited  on Si  substrate by thermal evaporation method under constant base pressure of 1.604 x10-4 Pa.  Thermal  oxidation  of  the deposited film was carried out at two different growth temperatures of 300 oC and 500 oC. The effects of growth temperature on the properties of zinc oxide were investigated.  Thermal oxidation was carried out in a horizontal tube furnace in air condition for constant time one hour. After thermal oxidation at temperature 500 oC, the white-silver zinc thin films were changed to black-brown zinc oxide. FESEM results show that the zinc particles were almost round shape with nanostructures in size. ZnO nanocrystals were successfully obtained at low growth temperature of 300 oC and the size of nanowires decreased as the growth temperature was increased to 500 oC. The XRD results confirmed that ZnO started to oxidize at growth temperature of 300 oC with the sharpest peak obtained indexed to ZnO(101). However, the oxidation of Zn was not fully completed while Zn peaks appeared at this temperature. At growth temperature 500 oC, all the peaks were indexed to ZnO with the sharpest peak was ZnO(101) meaning that the oxidation was completed. The calculated crystallite sizes were varied from 27.841 nm to 36.788 nm for ZnO at 300 °C and 0.697 nm to 161.18 nm for ZnO at 500 °C.

 

Keywords:  zinc oxide, silicon, thermal evaporation, thermal oxidation

 

Abstrak

Filem  nipis zink  telah berjaya didepositkan  pada  substrak Si oleh  kaedah  penyejatan haba  di bawah tekanan asas tetap 1.604x10-4 Pa.  Pengoksidaan  termal telah dijalankan ke atas filem yang telah didepositkan   pada dua  suhu yang berbeza  iaitu 300 oC dan 500 oC. Kesan suhu pertumbuhan pengoksidaan telah disiasat terhadap sifat zink oksida. Pengoksidaan termal untuk masa malar 1 jam dalam relau tiub mendatar dalam kehadiran udara telah dijalankan. Filem nipis zink putih diubah menjadi zink oksida hitam coklat selepas pengoksidaan haba pada suhu 500 oC. Keputusan FESEM menunjukkan bahawa zarah zink hampir membentuk bulat dengan saiz nanostruktur. Nanokristal ZnO telah berjaya diperoleh pada suhu pertumbuhan yang  rendah iaitu  300 oC dan saiz nanowayar menjadi berkurangan apabila suhu pertumbuhan meningkat kepada 500 oC. Hasil XRD mengesahkan bahawa ZnO mula teroksida pada suhu pertumbuhan 300 oC dengan puncak paling ketara yang diperoleh diindeks ke ZnO(101). Walau bagaimanapun, pengoksidaan Zn tidak siap sepenuhnya kerana masih terdapat puncak Zn muncul pada suhu ini. Pada suhu pertumbuhan 500 oC, semua puncak diindeks kepada  ZnO dengan puncak paling ketara ialah ZnO(101) yang  bermaksud pengoksidaan telah berlaku sepenuhnya. Saiz kristal yang dikira berbeza bermula dari 27.841 nm hingga 36.788 nm untuk ZnO pada 300 °C dan 0.6966 nm hingga 161.18 nm untuk ZnO 500 °C.

 

Kata kunci:  zink oksida, silikon, pengewapan haba, pengoksidaan haba

 

References

1.       Aida, M. S., Tomasella, E., Cellier, J., Jacquet, M., Bouhssira, N., Abed, S. and Mosbah, A. (2006). Annealing and oxidation mechanism of evaporated zinc thin films from zinc oxide powder. Thin Solid Films, 515 1494-99.

2.       Rusu, G. G., Girtan, M. and Rusu, S. (2007). Preparation and characterization of ZnO thin films prepared by thermal oxidation of evaporated Zn thin films. Superlattices and Microstructures, 42: 116-22.

3.       Yuan, L., Wang, C., Cai, R., Wang, Y. and Zhou, G. (2014). Temperature-dependent growth mechanism and microstructure of ZnO nanostructures grown from the thermal oxidation of zinc. Journal of Crystal Growth, 390:101-108.

4.       Girtan, M., Rusu, G.G., Dabos-Seignon, S. and Rusu, M. (2008). Structural and electrical properties of zinc oxides thin films prepared by thermal oxidation. Applied Surface Science, 254: 4179-4185.

5.       Rusu, G. G., Rusu, M. and Apetroaei, N. (2007). On the structural changes during thermal oxidation of evaporated Zn thin films. Thin Solid Films, 515: 8699-8704.

6.       Yuvaraj, D. and Rao, K. N. (2009). Selective growth of ZnO nanoneedles by thermal oxidation of Zn microstructures. Materials Science and Engineering B, 164:195-99.

7.       Liu, Y., Pan, C., Dai, Y. and Chen, W. (2008). Synthesis of one-dimensional ZnO nanoneedles using thermal oxidation process in the air and its application as filed emitters. Materials Letters, 62: 2783-2786.

8.       Li, Z. W., Gao, W. and Reeves, R. J. (2005). Zinc oxide films by thermal oxidation of zinc thin films. Surface & Coatings Technology, 198: 319-323.

9.       Dhananjay., Nagaraju, J. and Krupanidhi, S. B. (2007). Investigations on zinc oxide thin films grown on Si(100) by thermal oxidation. Materials Science and Engineering B, 137: 126-130.

10.    Rusu, D. I., Rusu, G. G. and Luca, D. (2011). Structural characteristics and optical properties of thermally oxidized zinc films. Acta Physica Polonica A, 119: 850-856.

11.    Pietruska, R., Witkowski, B.S., Gieraltowska, S., Caban, P., Wachnicki, L., Zielony, E., Gwozdz, K., Bieganski, P., Placzek-Popko, E. and Godlewski, M. (2015). New efficient solar cell structures based on zinc oxide nanorods. Solar Energy Materials & Solar Cells, 143: 99-104.

12.    Yu, W. and Pan, C. (2009). Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism. Materials Chemistry and Physics, 115: 74-79.

 




Previous                    Content                    Next