Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 723 - 734

DOI: 10.17576/mjas-2018-2204-19

 

 

 

ANALYSIS OF AMMONIUM ADSORPTION BEHAVIOR AND MASS TRANSFER RESISTANCE FROM AERATED LAGOON EFFLUENT ONTO ACTIVATED CARBON

 

(Analisis Sifat Penjerapan Amonium dan Rintangan Pemindahan Jisim dari Efluen Kolam Pengudaraan Terhadap Karbon Teraktif)

 

Mohd Hairul Khamidun1*, Shakila Abdullah2, Umi Fazara Md.Ali3, Mohamad Ali Fulazzaky4

 

1Micropollutant Research Centre, Faculty of Civil and Environmental Engineering

2Faculty of Science, Technology and Human Development

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Malaysia

3School of Environmental Engineering,

Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia

4Directorate General of Water Resources,

Ministry of Public Works and Housing, Jakarta, Indonesia

 

*Corresponding author:  mhairulk@gmail.com

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

High concentration ammonium (NH4+) discharges from aerated lagoon effluent (ALE) correlated to eutrophication of receiving waters. This study presents the first attempt to scrutinise the mass transfer mechanism of NH4+ from ALE onto the granular activated carbon (GAC) in batch and plug-flow column (PFC) studies. The GAC was characterised by BET surface, X-ray fluorescence, scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The kinetics and isotherm models were applied to experimental data to understand adsorption behaviour, while mass transfer factor (MTF) models was used to determine global, external, and internal mass transfer. The PFC was successfully applied for the removal of NH4+ from ALE. The results showed that the adsorption of NH4+ from ALE on the GAC followed the pseudo-second-order kinetic model and the Freundlich adsorption isotherm in batch study. The resistances of mass transfer for adsorption of NH4+ onto GAC from the PFC are verified. The use of these empirical models has been proved that the models were very suitable for PFC design and understanding mechanism of mass transfer of solutes from waters onto porous materials.

 

Keywords:  adsorption, ammonium, isotherm, kinetics, mass transfer resistance

 

Abstrak

Kepekatan amonium (NH4+) yang tinggi di dalam efluen yang dilepaskan dari kolam pengudaraan (ALE) akan menyebabkan eutrofikasi pada saliran yang menerima efluen tersebut. Kajian ini dijalankan untuk meneliti mekanisma rintangan permindahan jisim NH4+ dari ALE ke seluruh karbon teraktif berbutir (GAC) menggunakan kaedah ujikaji berkelompok dan aliran penuh ruangan berongga (PFC). Sifat fizikal dan kimia GAC ditentukan dengan menggunakan ujikaji permukaan BET, pendarfluor sinar-X, mikroskopi elektron pengimbasan, pembelauan sinar-X dan spektroskopi inframerah transformasi Fourier. Sifat penjerapan GAC telah dianalisis dengan menggunakan model isoterma dan kinetik, manakala model faktor permindahan jisim (MTF) digunakan untuk menganalisis faktor permindahan jisim global, luaran dan dalaman. Penggunaan PFC telah diuji dan disahkan berkesan untuk menyingkirkan NH4+ dari ALE. Hasil ujikaji berkelompok menunjukkan penjerapan NH4+ dari ALE telah mematuhi prinsip model kinetik tertib kedua dan model penjerapan isorterma Freundlich. Rintangan permindahan jisim untuk penjerapan NH4+ ke seluruh GAC dari PFC telah disahihkan.  Penggunaan semua model yang dinyatakan telah membuktikan bahawa model tersebut sesuai digunakan untuk rekabentuk PFC dan juga untuk memahami mekanisma permindahan bahan terlarut dalam air ke seluruh bahan berliang.

 

Kata kunci:  penjerapan, amonium, isorterma, kinetik, rintangan permindahan jisim

 

References

1.       Fan, C., Glibert, P. M. and Burkholder, J. A. M. (2003). Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for prorocentrum minimum in natural blooms and laboratory cultures. Harmful Algae, 2(4): 283-299.

2.       Halim, A. A., Aziz, H. A., Johari, M. A. M. and Ariffin, K. S. (2010). Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination, 262(1-3): 31-35.

3.       Boopathy, R., Karthikeyan, S., Mandal, A. B. and Sekaran, G. (2013). Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: Kinetic, isotherm, and thermodynamic studies. Environmental Science and Pollution Research International, 20(1): 533-542.

4.       Gan, L., Zuo, J., Xie, B., Li, P. and Huang, X. (2012). Zeolite (Na) modified by nano-Fe particles adsorbing phosphate in rainwater runoff. Journal of Environmental Sciences, 24(11): 1929-1933.

5.       Han, R., Zou, L., Zhao, X., Xu, Y., Xu, F., Li, Y. and Wang, Y. (2009). Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column. Chemical Engineering Journal, 149(1-3): 123-131.

6.       Ruhl, A. S., Zietzschmann, F., Altmann, J., Meinel, F., Sperlich, A. and Jekel, M. (2015). Stratification of granular activated carbon filters for advanced wastewater treatment. Water, Air, and Soil Pollution, 226(11): 384-394.

7.       Zayadi, N., Othman, N. and Hamdan, R. (2016). A potential waste to be selected as media for metal and nutrient removal. IOP Conference Series: Materials Science and Engineering, 136: 1-8.

8.       Vassileva, P., Tzvetkova, P. and Nickolov, R. (2009). Removal of ammonium ions from aqueous solutions with coal-based activated carbons modified by oxidation. Fuel, 88(2): 387-390.

9.       Halim, A. A., Aziz, H. A., Johari, M. A. M., Ariffin, K. S. and Adlan, M. N. (2010). Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent: fixed bed column adsorption performance. Journal of Hazardous Materials, 175(1-3): 960-964.

10.    Fulazzaky, M. A., Khamidun, M. H., Din, M. F. M. and Yusoff, A. R. M. (2014). Adsorption of phosphate from domestic wastewater treatment plant effluent onto the laterites in a hydrodynamic column. Chemical Engineering Journal, 258: 10-17.

11.    Fulazzaky, M. A., Khamidun, M. H. and Omar, R. (2013). Understanding of mass transfer resistance for the adsorption of solute onto porous material from the modified mass transfer factor models. Chemical Engineering Journal, 228: 1023-1029.

12.    Tazibet, S., Boucheffa, Y., Lodewyckx, P., Velasco, L. F. and Boutillara, Y. (2016). Microporous and mesoporous materials evidence for the effect of the cooling down step on activated carbon adsorption properties. Microporous and Mesoporous Materials, 221: 67-75.

13.    Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38 (11): 2221-2295.

14.    Ho, Y. S. and Mckay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChemE, 76: 332-340.

15.    Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3): 681-689.

16.    Ribas, M. C., Adebayo, M. A., Prola, L. D. T., Lima, E. C., Cataluña, R., Feris, L. A., and Calvete, T. (2014). Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chemical Engineering Journal, 248: 315-326.

17.    Siu, P. C. C., Koong, L. F., Saleem, J., Barford, J. and McKay, G. (2015). Equilibrium and kinetics of copper ions removal from wastewater by ion exchange. Chinese Journal of Chemical Engineering, 24(1): 94-100.

18.    Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57: 385-470.

19.    Chan, L. S., Cheung, W. H., Allen, S. J. and McKay, G. (2012). Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chinese Journal of Chemical Engineering, 20 (3): 535-542.

20.    Fulazzaky, M. A. (2011). Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column. Chemical Engineering Journal, 166(3): 832-840.

21.    Dhawan, R. and Meenakshi, K. K. B. (2015). Isotherms, kinetics and thermodynamics for adsorption of pyridine vapors on modified activated carbons. Adsorption, 21: 37-52.

22.    Şencan, A., Karaboyaci, M. and Kiliç, M. (2015). Determination of lead(II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2. Environmental Science and Pollution Research, 22: 3238-3248.

23.    Saha, P. Das, Chakraborty, S. and Chowdhury, S. (2012). Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids and Surfaces. B, Biointerfaces, 92: 262 – 70.

24.    Bandosz, T. J. and Petit, C. (2009). The reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. Journal of Colloid and Interface Science, 338(2): 329-345.

25.    Salman, J. M. (2014). Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution. Arabian Journal of Chemistry, 7(1): 101-108.

26.    Chand, P. and Pakade, Y. B. (2015). Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution. Environmental Science and Pollution Research, 22(14): 10919-10929.

27.    Arshadi, M., Salimivahid, F., Salvacion, J. W. L. and Soleymanzadeh, M. (2014). Adsorption studies of methyl orange on an immobilized mn-nanoparticle: kinetic and thermodynamic. RSC Advances, 4: 16005-16017.

28.    Fulazzaky, M. A. (2013). Calculation of the release of total organic matter and total mineral using the hydrodynamic equations applied to palm oil mill effluent treatment by cascaded anaerobic ponds. Bioprocess and Biosystems Engineering, 36(1): 11-21.

29.    Khamidun, M. H., Fulazzaky, M. A., Md Din, M. F. and Mohd Yusoff, A. R. (2014). Resistance of mass transfer, kinetic and isotherm study of ammonium removal by using a hybrid plug-flow column reactor (HPFCR). In W. P. Sung, ‎Jimmy C. M. Kao, and ‎Ran Chen (Eds.), Proceedings of the 2013 International Conference on Frontier of Energy and Environment Engineering, ICFEEE 2013. Taylor & Francis Group, Xiam: pp. 555–559.

30.    Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A. S., Sperlich, A., Meinel, F. and Jekel, M. (2014). Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Research, 65: 297-306.

31.    Foo, K. Y., Lee, L. K. and Hameed, B. H. (2013). Batch adsorption of semi-aerobic landfill leachate by granular activated carbon prepared by microwave heating. Chemical Engineering Journal, 222: 259-264.

 




Previous                    Content                    Next