Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 693 - 701

DOI: 10.17576/mjas-2018-2204-16

 

 

 

PHOTOCATALYTIC DEGRADATION OF INDUSTRIAL DYE WASTEWATER USING ZINC OXIDE-POLYVINYLPYRROLIDONE NANOPARTICLES

 

(Penguraian Fotopemangkinan Air Sisa Pewarna Industri Menggunakan Nanopartikel Zink Oksida-Polivinilpirolidon)

 

Dilaeleyana Abu Bakar Sidik1,2, Nur Hanis Hayati Hairom1*, Nur Zarifah Zainuri1, Amira Liyana Desa1, Nurasyikin Misdan3, Norhaniza Yusof4, Chin Boon Ong5, Abdul Wahab Mohammad6, Nur Shahirah Mohd Aripen2

 

1Department of Chemical Engineering Technology, Faculty of Engineering Technology

2 Department of Science and Mathematics, Center of Diploma Studies

3Department of Mechanical Engineering Technology, Faculty of Engineering Technology

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

4Advanced Membrane Technology Research Centre (AMTEC),

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

5Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

6Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  nhanis@uthm.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Due to the lack of studies regarding the potential of polyvinylpyrrolidone (PVP) as capping agent in precipitation of zinc oxide (ZnO) nanoparticles, this research focused on the performance of ZnO nanoparticles with presence of PVP loading on photocatalytic degradation treatment for industrial dye wastewater. Three different samples of ZnO-PVP were successfully synthesized via precipitation method.  The degradation rate of dye approached 90.61% under pH7 in the presence of ZnO-PVP (0.025g/L of PVP). The chemical bonds in ZnO-PVP was analysed using Fourier Transform Infrared Spectroscopy (FTIR).

 

Keywords:  zinc oxide, polyvinylpyrrolidone, photocatalytic, nanoparticles, wastewater treatment

 

Abstrak

Oleh kerana kekurangan kajian mengenai potensi polivinilpirolidon (PVP) sebagai ejen penutup dalam mendakan nanopartikel zink oksida (ZnO), kajian ini memberi tumpuan kepada prestasi nanopartikel ZnO dengan kehadiran muatan PVP dalam  rawatan penguaraian fotopemangkinan  air sisa industri pewarna. Tiga sampel ZnO-PVP yang berlainan telah berjaya disintesis melalui kaedah pemendakan. Kadar degradasi pewarna menghampiri 90.61% di bawah pH 7 bagi ZnO-PVP (PVP sebanyak 0.025 g/L). Ikatan kimia ZnO-PVP telah dianalisis menggunakan spektroskopi inframerah transformasi Fourier (FTIR).

 

Kata kunci:  zink oksida, polivinilpirolidon, fotopemangkinan, nanopartikel, rawatan air sisa

 

References

1.       Hairom, N. H. H., Mohammad, A. W. and Kadhum, A. A. H. (2014). Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation and Purification Technology, 137: 74-81.

2.       Bandekar, G., Rajurkar, N. S., Mulla, I. S., Mulik, U. P., Amalnerkar, D. P. and Adhyapak, P. V. (2013). Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Applied Nanoscience, 4(2): 199-208.

3.       Satheeskumar, S., Ramesh, K. and Srinivasan, N. (2015). Synthesis and characterization of chitosan and polyvinylpyrrolidone (PVP) capped ZnO nanoparticles and their antibacterial activity against Escherichia coli and Staphylococcus aurens. International Journal of ChemTech Research, 7(5): 2478-2482.

4.       Hairom, N. H. H., Mohammad, A. W. and Kadhum, A. A. H. (2015). Influence of zinc oxide nanoparticles in the nanofiltration of hazardous Congo red dyes. Chemical Engineering Journal, 260: 907-915.

5.       Kandjani, A. E., Tabriz, M. F. and Pourabbas, B. (2008). Sonochemical synthesis of ZnO nanoparticles: The effect of temperature and sonication power. Materials Research Bulletin, 43(3): 645-654.

6.       Yadav, R. S., Mishra, P. and Pandey, A. C. (2008). Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrasonics Sonochemistry, 15(5): 863-868.

7.       Vafaee, M. and Ghamsari, M. S. (2007). Preparation and characterization of ZnO nanoparticles by a novel sol-gel route. Materials Letters, 61(14-15): 3265-3268.

8.       Jurablu, S., Farahmandjou, M. and Firoozabadi, T. P. (2015). Sol-gel synthesis of ZnO nanoparticles: Study of structural and optical properties. Journal of Sciences, Islamic Republic of Iran, 26(3): 281-285.

9.       Baruwati, B., Kumar, D. K. and Manorama, S. V. (2006). Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. Sensors and Actuators, B: Chemical, 119 (2): 676-682.

10.    Hairom, N. H. H., Mohammad, A. W., Ng, L. Y. and Kadhum, A. A. H. (2014). Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane. Desalination and Water Treatment 54(4-5): 37-41.

11.    Yaser, A. Z. and Pogaku, R. (2017). Recent trends for the removal of colored particles in industrial wastewaters. Environmental Science and Pollution Research, 24(19): 15861-15862.

12.    Sowmyashree V. C., Tejaswini N. and Bhagwat, R. S. (2015). Removal of reactive blue dye from aqueous solution using neem leaves powder as an adsorbent. International Journal of ChemTech Research, 4(8): 117-120.

13.    Chequer, F. M. D., Oliveira, G. A. R. De, Ferraz, E. R. A., Cardoso, J. C., Zanoni, M. V. B. and Oliveira, D. P. De. (2013). Textile dyes: Dyeing process and environmental impact. Eco-Friendly Textile Dyeing and Finishing: pp. 151-176.

14.    Baruah, S., Pal, S. K. and Dutta, J. (2012). Nanostructured zinc oxide for water treatment. Nanoscience and Nanotechnology, 2(2): 90-102.

15.    Sidik, D. A. B., Ngadi, N. and Amin, N. A. S. (2013). Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid. Bioresource Technology, 135: 690-696.

16.    Lee, P. J., Saion, E., Al-hada, N. M. and Soltani, N. (2015). A simple up-scalable thermal treatment method for synthesis of ZnO nanoparticles. Metals, 5(4): 2383-2392.

17.    Mondal, K. and Sharma, A. (2016). Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – a mini-review. Nanoscience & Technology for Mankind; The Academy of Sciences India (NASI): Allahabad, India: pp. 36-72.

18.    Sudha, M. and Rajarajan, M. (2013). Deactivation of photocatalytically active ZnO nanoparticle by surface capping with polyvinyl pyrrolidone. IOSR Journal of Applied Chemistry, 3(3): 45-53.

19.    Zahrim, A. Y., Tizaoui, C. and Hilal, N. (2011). Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 266(1-3): 1-16.

20.    Li, Y., Zou, L. and Hu, E. (2004). Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution. Journal of Environmental Sciences(China), 16(3): 375-379.

21.    Huber, P. and Carre, B. (2012). Decolorization of process waters in deinking mills and similar applications. BioResources, 7(1): 1366-1382.

22.    Akpan, U. G. and Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2-3): 520-529.

23.    Tseng, D. H., Juang, L. C. and Huang, H. H. (2012). Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in aqueous suspension. International Journal of Photoenergy, 2012: 1-9.

24.    Wang, H., Qiao, X., Chen, J., Wang, X. and Ding, S. (2005). Mechanisms of PVP in the preparation of silver nanoparticles. Materials Chemistry and Physics, 94(2-3): 449-453.

25.    Behnajady, M. A., Modirshahla, N. and Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of Cl acid yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 133(1-3): 226-232.

26.    Chong, M. N., Jin, B., Chow, C. W. K. and Saint, C. (2010). Recent development in photocatalytic water treatment technology: A review. Water Research, 44(10): 2997-3027.

 




Previous                    Content                    Next