Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 676 - 683

DOI: 10.17576/mjas-2018-2204-14

 

 

 

BIOSYNTHESIS OF SILVER NANOPARTICLES USING Citrus grandis PEEL EXTRACT

 

(Biosintesis Nanopartikel Perak dengan Menggunakan Ekstrak Kulit Citrus grandis)

 

Nur Syazana Jalani1, Wong Michell1, Wong Ee Lin1, Sharifah Zati Hanani1*, Uda Hashim2, Rozaini Abdullah1

 

1Department of Chemical Engineering, Faculty of Engineering Technology,

Universiti Malaysia Perlis, Kampus UniCITI Alam, 02100 Sungai Chuchuh, Padang Besar, Perlis, Malaysia

2Institute Nano Electronic Engineering,

Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia

 

*Corresponding author:  sharifahzati@unimap.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

In this study, Citrus grandis or pomelo peel extract was used to synthesize silver nanoparticles (AgNPs). The effect of reaction time, amount of plant extract and concentration of silver nitrate which could influence the biosynthesis process were also studied. The synthesized AgNPs were then characterized by UV-Visible spectroscopy, Fourier transform infra-red spectroscopy (FTIR) and field emission scanning microscopy (FESEM) equipped with energy dispersive X-ray (EDX). The resulting UV-Vis spectra of synthesized AgNPs from pomelo peel extract showed standard surface plasmon resonance band in range of 401-433 nm which indicated the presence of AgNPs. FTIR spectra confirmed the existence of possible functional groups which might be responsible for the reduction of nanoparticles. Most of the synthesized AgNPs were observed in spherical shape which ranged between 20-30 nm under the Field Emission Scanning Electron microscope. The EDX analysis showed the strong signal at 3 keV from the silver atoms in the synthesized nanoparticles which confirmed that the synthesis of AgNPs was successful.

 

Keywords:  silver nanoparticles, Citrus grandis peel extract, biosynthesis, surface plasmon resonance

 

Abstrak

Dalam kajian ini, ekstrak kulit Citrus grandis atau limau bali telah digunakan untuk menghasilkan nanopartikel perak. Pengaruh masa tindak balas, jumlah ekstrak kulit limau bali dan kepekatan perak nitrat ke atas biosintesis nanopartikel perak turut dikaji. Pencirian nanopartikel perak yang terbentuk kemudiannya dijalankan menggunakan spektroskopi sinar UV, spektroskopi infra merah transformasi Fourier (FTIR) dan mikroskopi imbasan pancaran medan (FESEM) dilengkapi dengan sinar-X tenaga serakan (EDX). Spektra UV-Vis nanopartikel perak dari ektrak kulit limau bali menunjukkan puncak resonansi plasmon sekitar 401-433 nm yang membuktikan pembentukan nanopartikel perak. Spektra FTIR membuktikan kewujudan beberapa kumpulan berfungsi yang mungkin terlibat dalam proses penurunan nanopartikel. Kebanyakan nanopartikel perak dilihat berbentuk sfera dan bersaiz di antara 20-30 nm melalui mikroskopi imbasan pancaran medan. Analisis EDX pula menunjukkan isyarat yang kuat daripada atom perak dalam nanopartikel yang telah disintesis dan ini membuktikan sintesis nanopartikel perak telah berjaya.

 

Kata kunci:  nanopartikel perak, ekstrak kulit Citrus grandis, biosintesis, puncak resonansi plasmon

 

References

1.          Ahmed, S., Ahmad, M., Swami, B. L. and Ikram, S. (2014). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1): 17-28.

2.          Kotakadi, V. S., Rao, Y. S., Gaddam, S. A., Prasad, T. N. V. K. V, Reddy, A. V. and Gopal, S. V. R. S. (2013). Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 105: 194-198.

3.          Malik, P., Shankar, R., Malik, V., Sharma, N. and Mukherjee, T. K. (2014). Green chemistry based benign routes for nanoparticle synthesis. Journal of Nanoparticles, 2014: 1-14.

4.          Sathyavathi, R., Krishna, M. B., Rao, S. V., Saritha, R. and Narayana Rao, D. (2010). Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Advanced Science Letters, 3(2): 138-143.

5.          Nazeruddin, G. M., Prasad, N. R., Waghmare, S. R., Garadkar, K. M. and Mulla, I. S. (2014). Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity. Journal of Alloys and Compounds, 583: 272-277.

6.          Miri, A., Sarani, M., Rezazade Bazaz, M. and Darroudi, M. (2015). Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 141: 287-291.

7.          Sanchez, G. R., Castilla, C. L., Gomez, N. B., Garcia, A., Marcos, R. and Carmona, E. R. (2016). Leaf extract from the endemic plant Peumus boldus as an effective bioproduct for the green synthesis of silver nanoparticles. Materials Letters, 183: 255-260.

8.          Kokila, T., Ramesh, P. S. and Geetha, D. (2016). Biosynthesis of AgNPs using Carica papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicology and Environmental Safety, 134: 467-473.

9.          Zarina, Z. and Tan, S. Y. (2013). Determination of flavonoids in Citrus grandis (Pomelo) peels and their inhibition activity on lipid peroxidation in fish tissue. International Food Research Journal, 20(1): 313-317.

10.        Nayak, D., Ashe, S., Rauta, P. R., Kumari, M. and Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering C, 58(1): 44-52.

11.        Nakhjiri, F., Mirhosseini, M. and Mozaheb, M. A. (2013). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Nanomedical Journal, 4(2): 98-106.

12.        Vasireddy, R., Paul, R. and Krishna, A. (2012). Green synthesis of silver nanoparticles and the study of optical properties. Nanomaterial Nanotechnology, 2: 1-6.

13.        Huang, X. and El-Sayed, M, A. (2010). Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1): 13-28.

14.        Senthamilselvi, S., Kumar, P., Prabha, A. L. and Govindaraju, M. (2013). Green simplistic biosynthesis of anti- bacterial silver nanoparticles using Annona Squamosa leaf extract. Nano Biomedical Engineering, 5(2): 102-106.

15.        Yang, N. and Li, W. (2013). Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Industrial Crops and Products, 48: 81- 88.

16.        Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S. and Misra, A. (2009). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348(1): 212-216.

17.        Mansouri, S. S. and Ghader, S. (2009). Experimental study on effect of different parameters on size and shape of triangular silver nanoparticles prepared by a simple and rapid method in aqueous solution. Arabian Journal of Chemistry, 2(1): 47-53.

18.        Ahmad, B., Ali, J. and Bashir, S. (2013). Optimization and effects of different reaction conditions for the bioinspired synthesis of silver nanoparticles using Hippophae rhamnoides Linn. leaves aqueous extract. World Applied Sciences Journal, 22(6): 836-843.

19.        Ahmed, S., Ullah, S., Ahmad, M. and Swami, B. L. (2015). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1): 1-7.

20.        Vanaja, M. and Annadurai, G. (2012). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3(3): 217-223.

21.        Prabakar, K., Sivalingam, P., Mohamed Rabeek, S. I., Muthuselvam, M., Devarajan, N., Arjunan, A. and Wembonyama, J. P. (2013). Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens. Colloids and Surfaces B: Biointerfaces, 104: 282-288.

 




Previous                    Content                    Next