Malaysian Journal of Analytical Sciences Vol 22 no 4 (2018): 659 - 666

DOI: 10.17576/mjas-2018-2204-12

 

 

 

TOTAL PHENOLIC, FLAVONOID CONTENT AND ANTIOXIDANT ACTIVITY OF Clinacanthus nutans LEAVES BY WATER-BASED ULTRASONIC ASSISTED EXTRACTION

 

(Kandungan Fenolik, Flavonoid dan Aktiviti Antioksidan bagi Clinacanthus nutans Menggunakan Bantuan Pengekstrakan Ultrasonik Berasaskan Air)

 

Nurul Amila Fadhlin Baharuddin1, Mariam Firdhaus Mad Nordin1*, Noor Azian Morad1, Nor Ilia Anisa Aris1, Mohd Azizi Che Yunus2

 

1Shizen Conversion and Separation Technology (SHIZEN Ikohza),

Malaysia-Japan International Institute of Technology (MJJIT)

Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur

2Centre of Lipid Engineering and Applied Research (CLEAR)

Universiti Teknologi Malaysia, 81310 Johor Bharu, Johor, Malaysia

 

*Corresponding author:  mariamfirdhaus@utm.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Clinacanthus nutans (C. nutans) is a prominent herb species that widely cultivated in Southeast Asia region. The effect of water-based ultrasonic assisted extraction at various temperature (30 to 60 °C) and time (5 to 30 minutes) on the total phenolic, flavonoid content and antioxidant activity in C. nutans leaves extract was investigated. Acquired extract was quantified for its total phenolic, flavonoid content and antioxidant activity by Folin-Ciocalteu, aluminium chloride test and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. The result has revealed that the highest temperature led to the degradation of bioactive compound in C. nutans leaves. The highest phenolic content and antioxidant activity achieved at 55 °C and 25 minutes with 13.87 ± 0.15 mg gallic acid g-1 dry sample and 52.88 ± 3.91% inhibition, respectively. Meanwhile, greatest flavonoid content was obtained for 12.25 ± 1.01 mg quercetin g-1 of dry sample at 55 °C and 15 minutes of extraction. From this study, it was shown that C. nutans extraction has gained benefit from ultrasonic assisted extraction and has possibilities of being used for the herbs utilisation of beneficial food materials, nutraceuticals and pharmaceuticals at manufacturing industry.

 

Keywords:  Clinacanthus nutans, ultrasonic assisted extraction, phenolic, flavonoid, antioxidant

 

Abstrak

Clinacanthus nutans (C. nutans) adalah spesies herba terkemuka yang ditanam secara meluas di rantau Asia Tenggara. Dalam kajian ini, kesan ultrasonik pada suhu (30 hingga 60 °C) dan masa (5 hingga 30 minit) yang berbeza terhadap kandungan fenolik, flavonoid dan aktiviti antioksida di dalam ekstrak daun C. nutans telah dikaji. Hasil pengekstrakan yang diperolehi telah dianalisa jumlah kandungan fenolik, flavonoid serta aktiviti antioksida setiapnya dengan menggunakan kaedah Folin-Ciocalteu, aluminium klorida dan ujian 2, 2-difenil-1-pikrilhidrazil (DPPH). Keputusan menunjukan bahawa, suhu yang tinggi menyebabkan penguraian sebatian bioaktif di dalam ekstrak C. nutans. Jumlah kandungan fenolik  dan aktiviti antioksida yang tertinggi masing-masing telah didapati pada keadaan 55 °C dan 25 minit dengan nilai masing-masing adalah sebanyak 13.87 ± 0.15 mg asid galik g-1 sampel kering dan 52.88 ± 3.91% perencatan. Sementara itu, kandungan flavonoid pula telah diperolehi sebanyak 12.25 ± 1.01 mg quercetin g-1 sampel kering pada keadaan pengekstrakan 55 °C dan 15 minit. Hasil kajian ini menunjukan bahawa, kaedah pengekstrakan dengan bantuan ultrasonik amat berguna dalam pengekstrakan daun C. nutans dan mempunyai peluang yang tinggi dalam penggunaan herba yang bermanfaat di dalam industri pembuatan makanan, nutraseutikal serta farmaseutikal.

 

Kata kunci:  Clinacanthus nutans, pengekstrakan bantuan ultrasonik, fenolik, flavonoid, antioksidan

 

References

1.       Kumar Dash, G. and Deb, J. (2014). Pharmacognostical studies on stem bark of Acacia ferruginea DC. Der Pharmacia Lettre, 6(3): 61-66.

2.       Aslam, M. S., Ahmad, M. S., Mamat, A. S., Ahmad, M. Z. and Salam, F. (2016). Antioxidant and wound healing activity of polyherbal fractions of Clinacanthus nutanss and Elephantopus scaber. Evidence-based Complementary and Alternative Medicine, 2016: 1-14.

3.       Alam, A., Ferdosh, S., Ghafoor, K., Hakim, A., Juraimi, A. S., Khatib, A. and Sarker, Z. I. (2016). Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry. Asian Pacific Journal of Tropical Medicine, 9(4): 402-409.

4.       Yahaya, R., Dash, K., Abdullah, M. S. and Mathews, A. (2015). Clinacanthus nutans (burm. F.) Lindau: A useful medicinal plant of south-east Asia. International Journal of Pharmacy and Pharmaceutical Research, 7(6): 1244-1250.

5.       Tee, L. H., Ramanan, R. N., Tey, B. T., Chan, E. S., Azrina, A., Amin, I., Bao, Y., Lau, C. Y. and Prasad, K. N. (2105). Phytochemicals and antioxidant capacities from Dacryodes rostrata fruits. Medicinal Chemistry, 5(1): 23-27.

6.       Solibun, A. and Sivakumar, K. (2016). Sabah snake grass extract pre-processing: Preliminary studies in drying and fermentation. IOP Conf. Series: Earth and Environmental Science, 36: 1-7.

7.       Gharekhani, M., Ghorbani, M. and Rasoulnejad, N. (2012). Microwave-assisted extraction of phenolic and flavonoid compounds from Eucalyptus camaldulensis Dehn leaves as compared with ultrasound-assisted extraction. Latin American Application Research, 42: 305-310.

8.       Raya, K. B., Ahmad, S. H., Farhana, S. F., Mohammad, M., Tajidin, N. E. and Parvez, A. (2015). Changes in phytochemical contents in different parts of Clinacanthus nutans (Burm. f.) Lindau due to storage duration. Bragantia, 74: 445-452.

9.       Susanti, R. F., Kurnia, K., Vania, A. and Reynaldo, I. J. (2015). Total phenol, flavonoid and antioxidant activity of Physalis angulata leaves extract by subcritical water extraction. Modern Application Science, 9(7): 190-198.

10.    Pang, S. F., Yusoff, M. M., Abdullah. C. L. and Gimbun, J. (2015). Ultrasonic assisted extraction of phenolic and flavonoid content from Orthosiphon stamineus leaves. Science Technology Progress, 1: 10-13.

11.    Picó, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrAC Trends in Analytical Chemistry, 43: 84-99.

12.    Dent, M., Dragović-Uzelac, V., Elez Garofulić, I., Bosiljkov, T., Ježek, D. and Brnčić, M. (2015). Comparison of conventional and ultrasound-assisted extraction techniques on mass fraction of phenolic compounds from sage (Salvia officinalis L.). Chemical and Biochemistry, 29: 475-484.

13.    Vilkhu, K., Mawson, R., Simons, L. and Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry: A Review. Innovative Food Science and Emerging Technologies, 9(2): 161-169.

14.    Tan, S. P., Parks, S. E., Stathopoulos, C. E. and Roach, P. D. (2014). Extraction of flavonoids from bitter melon. Food and Nutrition Sciences, 5(5): 458-465.

15.    Sharifi, A., Mortazavi, S. A., Maskooki, A., Niakousari, M. and Elhamirad, A. H. (2013). Optimization of subcritical water extraction of bioactive compounds from barberry fruit (Berberis vulgaris) by using response surface methodology. International Journal of Agriculture and Crop Sciences, 6(2): 89-96.

16.    Altemimi, A., Watson, D. G., Choudhary, R., Dasari, M. R. and Lightfoot, D. A. (2016). Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLoS ONE, 11(2): 1-20.

17.    Yim, H. S., Chye, F. Y., Rao, V., Low, J. Y., Matanjun, P., How, S. E. and Ho, C. W. (2013). Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. Journal of Food Science and Technology, 50(2): 275-283.

18.    Kiassos E., Mylonaki S., Makris D. P., Kiassos P. K. E, Mylonaki S., Makris D. P. and Kefalas P. (2009). Implementation of response surface methodology to optimise extraction of onion (Allium cepa) solid waste phenolics. Innovative Food Science Emerging Technology, 10: 246-252.

19.    Gan, C. Y. and Latiff, A. A. (2011). Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chemistry, 124: 1277-1283.

20.    Wang, J., Sun, B., Cao, Y., Tian, Y. and Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106: 804-810.

21.    Gimbun, J., Ishak, N. F., Muhammad, N. I. S., Pang, S. F., Kadir, M. A. A., Ramli, H. and Khadisah, Z. (2014). Ultrasonic assisted extraction polyphenols and antioxidant from Nigella sativa seed. Journal of Engineering and Technology, 5(2): 17-26.

22.    Tabaraki, R. and Nateghi, A. (2015). Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrasonics Sonochemistry, 18(6): 1279-1286.

23.    Altemimi, A., Choudhary, R., Watson, D. G. and Lightfoot, D. A. (2015). Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrasonic Sonochemistry, 24: 247-255.

24.    Cacace J. E. and Mazza G. (2003) Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59: 379-389.

25.    Teh, S. S. and Birch, E. J. (2014). Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrasonics Sonochemistry, 21(1): 346-353.

26.    Silva, A. J., Silva, J. R., de Souza, N. C. and Souto, P. C. (2014). Membranes from latex with propolis for biomedical applications. Materials Letters, 116: 235-238.

27.    Wang, T., He, F. and Chen, G. (2014). Improving bio accessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods, 7: 101-111.

28.    Durling, N. E., Catchpole, O. J., Grey, J. B., Webby, R. F., Mitchell, K. A., Foo, L. Y. and Perry, N. B. (2007). Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol water mixtures. Food Chemistry, 101(4): 1417-1424.

29.    Sharma, O. P. and Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4): 1202-1205.

30.    Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J. and Núñez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6): 2111-2117.

31.    Sathishkumar, T., Baskar, R., Aravind, M., Tilak, S., Deepthi, S. and Bharathikumar, V. M. (2013). Simultaneous extraction optimization and analysis of flavonoids from the flowers of Tabernaemontana heyneana by high performance liquid chromatography coupled to diode array detector and electron spray ionization/mass spectrometry. International Scholarly Research Notices Biotechnology, 13: 1-10.

 




Previous                    Content                    Next