Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 383 - 390

DOI: 10.17576/mjas-2018-2203-03

 

 

 

EXTRACTION OF BISPHENOL A IN ENVIRONMENTAL WATER AND SOFT DRINK BY C18-IMPREGNATED CELLULOSE TRIACETATE COMPOSITE FILM

 

(Pengekstrakan Bisfenol A dalam Air Alam Sekitar dan Minuman Ringan Menggunakan Filem Komposit Selulosa Triasetat Berimpregnasikan C18)

 

Saw Hong Loh*, Ee Ling Aw, Seok Wen Lee

 

School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  lohsh@umt.edu.my

 

 

Received: 12 February 2018; Accepted: 29 April 2018

 

 

Abstract

Bisphenol A (BPA) is an industrial chemical applied in making polycarbonate and epoxy resin that commonly used as food containers, beverage cans and baby bottles. BPA could be discharged into the environment from industrial waste and sewage treatment plant which then causing adverse effects to aquatic organism and consumers. Micro-solid phase extraction (µ-SPE) using C18-impregnated cellulose triacetate (C18-CTA) composite film as the adsorbent films coupled with high performance liquid chromatography–fluorescence detection (HPLC-FD) has been developed for the determination of BPA in environmental water and soft drink samples. Under the optimum extraction conditions, the method showed excellent linearity in the range of 0.1 to 500 ppb with correlation coefficient, r = 0.992. This method provided ultra-trace detection limit of 0.004 ppb, trace quantification limit of 0.01 ppb and acceptable relative recovery average in the range of 80.9 to 102.6% with relative standard deviation ≤ 9.7%. The proposed microextraction method is simple, rapid and eco-friendly as it consumes less amount of non-hazardous organic solvent.

 

Keywords:    bisphenol A, C18, cellulose triacetate, film, micro-solid phase extraction, high performance liquid chromatography

 

Abstrak

Bisfenol A (BPA) ialah suatu bahan kimia industri yang digunakan dalam pembuatan polikarbonat dan resin epoksi yang biasa digunakan sebagai bekas makanan, tin minuman dan botol bayi. BPA boleh dilepaskan ke dalam alam sekitar daripada sisa industri dan loji rawatan kumbahan yang kemudiannya menyebabkan kesan buruk kepada organisma akuatik dan pengguna. Pengekstrakan mikro fasa pepejal (µ-SPE) menggunakan filem komposit selulosa triasetat berimpregnasi C18 (C18-CTA) sebagai filem penjerap berpasangan kromatografi cecair prestasi tinggi-pengesanan pendarfluor (HPLC-FD) telah dibangunkan untuk penentuan BPA dalam sampel air alam sekitar dan minuman ringan. Di bawah keadaan pengekstrakan optimum, kaedah ini menunjukkan kelinearan yang cemerlang daripada kepekatan 0.1 hingga 500 ppb dengan pekali korelasi, r = 0.992. Kaedah ini memberi had pengesanan ultra rendah iaitu 0.004 ppb, had kuantifikasi rendah iaitu 0.01 ppb dan purata pemulihan relatif yang boleh diterima dalam lingkungan 80.9 hingga 102.6% dengan sisihan piawai relatif ≤ 9.7%. Pengekstrakan mikro yang dicadangkan adalah bermanfaat daripada segi operasi mudah, cepat dan mesra alam kerana ia menggunakan sedikit pelarut organik yang tidak berbahaya.

 

Kata kunci:      bisfenol A, C18, selulosa triasetat, filem, pengekstrakan mikro fasa pepejal, kromatografi cecair prestasi tinggi

 

References

1.       National Toxicology Program (2010). Bisphenol A (BPA). https://www.niehs.nih.gov/research/supported/ assets/docs/a_c/bpa_fact_sheet_508.pdf. [Access online 12 February 2018].

2.       Elobeid, M. A., Almarhoon, Z. M., Virk, P., Hassan, Z. K., Omer, S. O., EIamin, M., Daghestani, M. H. and AIOIayan, E. M. (2012). Bisphenol A detection in various brands of drinking bottled water in Riyadh, Saudi Arabia using gas chromatography/mass spectrometer. Tropical Journal of Pharmaceutical Research, 11(3): 455-459.

3.       Omer, L., Ahmed, H. and Elbashir, A. (2016). Determination of bisphenol A in exposed bottled water samples to direct sunlight using multi walled carbon nanotubes as solid phase extraction sorbent. Journal of Environmental Chemistry and Ecotoxicology, 8(7): 51-57.

4.       Szymanski, A., Rykowska, I. and Wasiak, W. (2006). Determination of bisphenol A in water and milk by micellar liquid chromatography. Acta Chromatographica, 17: 161-172.

5.       Liu, X. Y., Ji, Y. S., Zhang, H. X. and Liu, M. C. (2008). Elimination of matrix effects in the determination of bisphenol A in milk by solid-phase microextraction-high-performance liquid chromatography. Food Additives & Contamination, 25(6): 772-778.

6.       Liu, X. Y., Ji, Y. S., Zhang, H. X. and Liu, M. C. (2008). A chemometric strategy for optimization of solid-phase microextraction: Determination of bisphenol A and 4-nonylphenol with HPLC. Journal of Chromatographic Science, 46: 590-600.

7.       De Coensel, N., David, F. and Sandra, P. (2009). Study on the migration of bisphenol A from baby bottles by stir bar sorptive extraction-thermal desorption-capillary GC-MS. Journal of Separation Science, 32(21): 3829-3836.

8.       Gao, L., Zou, J., Liu, H., Zeng, J., Wang, Y. and Chen, X. (2013). Determination of Bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single-drop microextraction and HPLC. Journal of Separation Science, 36(7): 1298-1303.

9.       Loh, S. H., Ong, S. T., Ngu, M. L. and Mohd Ariffin, M. (2017). Rapid extraction of bisphenol A by dispersive liquid-liquid microextraction based on solidification of floating organic. Sains Malaysiana, 46 (4): 615-621.

10.    Kocourek, V. (2012). Method validation and quality control procedure. Institute of Chemical Technology Prague. https://web.vscht.cz/~kocourev/en_GB/files/Method%20validation
%202012.pdf. [Access online 12 February 2018].

11.    Yohannes, A., Tolesa, T., Merdassa, Y. and Megersa, N. (2016). Single drop microextraction analytical technique for simultaneous separation and trace enrichment of atrazine and its major degradation products from environmental waters followed by liquid chromatographic determination. Journal of Analytical & Bioanalytical Techniques, 7(5): 1-8.

12.    Sadeghi, M., Nematifar, Z., Fattahi, N., Piraheb, M. and Shamsipur, M. (2016). Determination of Bisphenol A in food and environmental samples using combined solid-phase extraction-dispersive liquid-liquid microextraction with solidification of floating organic drop followed by HPLC. Food Analysis Methods, 9(6): 1814-1824.

13.    Wang, L., Zhang, Z., Zhang, J. and Zhang, L. (2016). Magnetic solid-phase extraction using nanoporous three dimensional graphene hybrid materials for high-capacity enrichment and simultaneous detection of nine bisphenol analogs from water sample. Journal of Chromatography A, 1463: 1-10.

14.    Wang, L., Liang, N., Sun, Z., Liu, D. and Hou, X. (2013). Development of dispersive liquid-liquid microextraction method based on solidification of floating organic drops combined with high performance liquid chromatography for the determination of curcumin in rat plasma. Asian Journal, 8(6): 147-158.

15.    Yoon, Y., Westerhoff, P., Snyder, S. A. and Esparza, M. (2003). HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Research, 37(14): 3530-3537.

16.    Rudel, R. A., Gray, J. M., Engel, C. L., Rawsthorne, T. W., Dodson, R. E., Ackerman, J. M., Rizzo, J., Nudelman, J. L. and Brody, J. G. (2011). Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: Findings from a dietary intervention. Environmental Health Perspective, 119(7): 914-920.




Previous                    Content                    Next