Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 249 - 257

DOI: 10.17576/mjas-2018-2202-09

 

 

 

OPTIMIZATION OF SELECTED CHARCOAL POWDER COMPOSITE ELECTRODE FOR ELECTROCHEMICAL TREATMENT

OF LANDFILL LEACHATE

 

(Pengoptimuman Komposit Elektrod daripada Serbuk Arang Terpilih untuk Rawatan Elektrokimia Bahan Larut Lesap Tapak Pelupusan)

 

Majd Ahmed Jumaah1*, Mohamed Rozali Othman1, 2, Jumat Salimon1, Baydaa Khalaf1, Wan Mohd Afiq Wan Mohd Khalik2, 3

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

2Centre for Water Research and Analysis, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 3School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  majd.ahmed88@yahoo.com

 

 

Received: 19 October 2017; Accepted: 29 January 2018

 

 

Abstract

Charcoal powders obtained from commercially available charcoal and the open burning of palm oil, rubber, coconut, and mangrove trees were used to fabricate composite electrodes in this study. A weight portion of charcoal powder, graphite, cobalt, and polyvinyl chloride (C-CG-Co-PVC) were mixed in tetrahydrofuran (THF). The fabricated composite electrodes were then used as working electrodes for the electrochemical treatment of landfill leachate samples. A variable pressure scanning electron microscope (VPSEM) was used to examine the appearance of the charcoal powder. The results showed that rubber tree charcoal powder is the best charcoal powder for fabricating the composite electrodes, as it has various pore sizes and more surface area available for adsorption and reaction. Field emission scanning electron microscopy (FESEM) was performed before and after electrolysis of the landfill leachate. The results revealed that the presence of voids on the electrode surface before and after electrolysis improved the electrochemical oxidation of the landfill leachate, and yielded removal percentages in colour, COD, NH3-N, and total P of not less than 80%, 91%, 73%, and 84%, respectively.

 

Keywords:  landfill leachate, charcoal powder, composite electrode, electrochemical method

 

Abstrak

Serbuk arang yang diperoleh dari arang komersil dan pembakaran terbuka batang-batang pokok kelapa sawit, pokok getah, pokok kelapa, dan pokok bakau telah digunakan untuk membina elektrod komposit berasaskan arang hasil gabungan serbuk arang, grafit, kobalt dan polivinil klorida (C-CG-Co-PVC) yang telah dicampurkan mengikut komposisi berat tertentu dalam pelarut tetrahidrofuran (THF). Elektrod komposit yang telah dibina kemudiannya digunakan sebagai elektrod kerja untuk merawat sampel air bahan larut lesap melalui kaedah elektrokimia. Mikroskop elektron imbasan tekanan boleh ubah (VPSEM) telah digunakan untuk mengkaji sifat fizikal serbuk arang. Keputusan menunjukkan bahawa serbuk arang pokok getah merupakan serbuk arang terbaik untuk membina elektrod komposit dalam kajian ini kerana ia mempunyai banyak liang dan luas permukaan yang lebih tinggi untuk penjerapan dan tindak balas berlaku. Mikroskop imbasan elektron medan pancaran (FESEM) telah digunakan untuk memerhati permukaan elektrod yang telah disediakan sebelum dan selepas elektrolisis bahan larut lesap. Keputusan menunjukkan bahawa terdapat kehadiran lohong pada permukaan elektrod sebelum dan selepas elektrolisis. Hal ini membantu memperbaiki proses pengoksidaan elektrokimia bahan larut lesap yang telah menyebabkan peratus pengurangan warna, COD, NH3-N, dan total P masing-masingnya tidak kurang daripada 80%, 91%, 73%, dan 84%.

 

Kata kunci:  bahan larut lesap tapak pelupusan, serbuk arang, elektrod komposit, kaedah elektrokimia

 

References

1.       Wu, J. J., Wu, C. C., Ma, H. W. and Chang, C. C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54(7): 997-1003.

2.       Kurniawan, T. A., Lo, W. H. and Chan, G. Y. (2006). Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. Journal of hazardous materials, 129(1): 80-100.

3.       Jumaah, M. A., Othman, M. R. and Yusop, M. R. (2016). Characterization of leachate from Jeram sanitary landfill-Malaysia. International Journal of ChemTech Research, 9(8): 571-574.

4.       Xu, Z. Y., Zeng, G. M., Yang, Z. H., Xiao, Y., Cao, M., Sun, H. S., Ji, L. L. and Chen, Y. (2010). Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresource Technology, 101(1): 79-86.

5.       Cho, S. P., Hong, S. C. and Hong, S. I. (2002). Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds. Applied Catalysis B: Environmental, 39(2): 125-133.

6.       Lim, Y. N., Shaaban, M. G. and Yin, C. Y. (2009). Treatment of landfill leachate using palm shell-activated carbon column:  Axial  dispersion  modeling  and  treatment profile. Chemical Engineering Journal, 146(1): 86-89.

7.       Neczaj, E., Okoniewska, E. and Kacprzak, M. (2005). Treatment of landfill leachate by sequencing batch reactor. Desalination, 185(1): 357-362.

8.       Galeano, L. A., Vicente, M. Á. and Gil, A. (2011). Treatment of municipal leachate of landfill by Fenton-like heterogeneous catalytic wet peroxide oxidation using an Al/Fe-pillared montmorillonite as active catalyst. Chemical Engineering Journal, 178(15): 146-153.

9.       Li, W., Hua, T., Zhou, Q., Zhang, S. and Li, F. (2010). Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination, 264(1): 56-62.

10.    Hasar, H., Unsal, S. A., Ipek, U., Karatas, S., Cınar, O., Yaman, C. and Kınacı, C. (2009). Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. Journal of Hazardous Materials, 171(1): 309-317.

11.    Tabet, K., Moulin, P., Vilomet, J. D., Amberto, A. and Charbit, F. (2002). Purification of landfill leachate with membrane processes: Preliminary studies for an industrial plant. Separation Science and Technology, 37(5): 1041-1063.

12.    Bashir, M. J., Isa, M. H., Kutty, S. R. M., Awang, Z. B., Aziz, H. A., Mohajeri, S. and Farooqi, I. H. (2009). Landfill leachate treatment by electrochemical oxidation. Waste Management, 29(9): 2534-2541.

13.    Jumaah, M. A. and Othman, M. R. (2015). Decolorization of landfill leachate using electrochemical oxidation technique. In AIP Conference Proceedings, 1678(1): 050032.

14.    Jumaah, M. A. and Othman, M. R. (2015). Study the efficiency of various metal powder composition electrodes based on landfill leachate treatment. International Journal of ChemTech Research, 8(12): 559-563.

15.    Martínez-Huitle, C. A. and Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, 87(3): 105-145.

16.    Jumaah, M. A., Othman, M. R. and Yusop, M. R. (2016). Batch method treatment of landfill leachate using charcoal composite. International Journal of ChemTech Research, 9(8): 583-586.

17.    American Public Health Association (2005). Standard methods for the examination of water and wastewater, 21st edition; American Public Health Association: Washington, D.C.

18.    Hamdan, M. S., Nordin, N. and Amir, S. F. M. (2011). Electrochemical behaviour of Ni and Ni-PVC electrodes for the electroxidation of ethanol. Sains Malaysiana, 40(12): 1421-1427.

19.    Gubernat, M., Tomala, J., Frohs, W., Fraczek-Szczypta, A. and Blazewicz, S. (2016). De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials. Journal of Nanoparticle Research, 18(3): 56-69.

20.    Shendkar, C. D., Torane, R. C., Mundhe, K. S., Lavate, S. M., Pawar, A. B. and Deshpande, N. R. (2013). Characterization and application of activated carbon prepared from waste weed. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2): 527-529.

21.    Jumaah, M. A., Othman, M. R. and Yusop, M. R. (2016). Electrochemical treatment of landfill leachate: Optimization of COD removal using charcoal-graphite-cobalt-polyvinyl chloride electrode. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(5): 2812-2816.

22.    Blanco, J., Torrades, F., De la Varga, M. and García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286: 394-399.

23.    Zakaria, Z., Nordin, N., Hasan, S. Z., Baharuddin, N. A., Jumaah, M. A. and Othman, M. R. (2015). Decolorization of reactive orange 16 dye using fabricated charcoal base metallic composite electrode. Malaysian Journal of Analytical Sciences, 19(3): 493-502.

24.    Zhang, L. L. and Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9): 2520-2531.

25.    Ratnasingam, J., Ioras, F. and Wenming, L. (2011). Sustainability of the rubber wood sector in Malaysia. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2): 305-311.

26.    Sanroman, M. A., Pazos, M., Ricart, M. T. and Cameselle, C. (2004). Electrochemical decolourisation of structurally different dyes. Chemosphere, 57(3): 233-239.

27.    Chang, X., Thind, S. S. and Chen, A. (2014). Electrocatalytic enhancement of salicylic acid oxidation at electrochemically reduced TiO2 nanotubes. ACS Catalysis, 4(8): 2616-2622.

28.    Jumaah, M. A. and Othman, M. R. (2015). Optimization of operating conditions for landfill leachate treatment using electrochemical oxidation technique. International Journal of ChemTech Research, 8(2): 783-787.

29.    Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1): 11-41.

30.    Jumaah, M. A. and Othman, M. R. (2015). COD removal from landfill leachate by electrochemical method using charcoal-PVC electrode. International Journal of ChemTech Research, 8(12): 604-609.

31.    Jumaah, M. A., Othman, M. R. and Zakaria, Z. (2015). Fabrication of selected metal powder composite electrode for landfill leachate treatment using electrochemical method. International Journal of Chemical Sciences, 13(2): 943-954.

32.    Jumaah, M. A., Othman, M. R., Yusop, M. R., Salimon, J., Khalaf, B. and Khalik, W. M. A. W. M. (2017). Charcoal base metallic composite electrode for wastewater treatment. Malaysian Journal of Analytical Sciences21(6): 1432-1437.




Previous                    Content                    Next