Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 249 - 257
DOI:
10.17576/mjas-2018-2202-09
OPTIMIZATION OF SELECTED CHARCOAL POWDER COMPOSITE ELECTRODE
FOR ELECTROCHEMICAL TREATMENT
OF LANDFILL LEACHATE
(Pengoptimuman Komposit Elektrod daripada Serbuk Arang Terpilih untuk
Rawatan Elektrokimia Bahan Larut Lesap Tapak Pelupusan)
Majd Ahmed Jumaah1*, Mohamed Rozali Othman1,
2, Jumat Salimon1, Baydaa Khalaf1, Wan Mohd Afiq Wan Mohd Khalik2, 3
1School of Chemical Sciences and Food Technology,
Faculty of Science and Technology
2Centre for Water Research and Analysis, Faculty of
Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
3School
of Marine and Environmental Sciences,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
*Corresponding author: majd.ahmed88@yahoo.com
Received: 19
October 2017; Accepted: 29 January 2018
Abstract
Charcoal powders obtained from commercially available charcoal and the
open burning of palm oil, rubber, coconut, and mangrove trees were used to
fabricate composite electrodes in this study. A weight portion of charcoal
powder, graphite, cobalt, and polyvinyl chloride (C-CG-Co-PVC) were
mixed in tetrahydrofuran (THF). The fabricated composite electrodes were then
used as working electrodes for the electrochemical treatment of landfill
leachate samples. A variable pressure scanning electron microscope (VPSEM) was
used to examine the appearance of the charcoal powder. The results showed that
rubber tree charcoal powder is the best charcoal powder for fabricating the
composite electrodes, as it has various pore sizes and more surface area
available for adsorption and reaction. Field emission scanning electron
microscopy (FESEM) was performed before and after electrolysis of the landfill
leachate. The results revealed that the presence of voids on the electrode
surface before and after electrolysis improved the electrochemical oxidation of
the landfill leachate, and yielded removal percentages in colour, COD, NH3-N,
and total P of not less than 80%, 91%, 73%, and 84%, respectively.
Keywords: landfill leachate, charcoal
powder, composite electrode, electrochemical method
Abstrak
Serbuk arang
yang diperoleh dari arang komersil dan pembakaran terbuka batang-batang pokok
kelapa sawit, pokok getah, pokok kelapa, dan pokok bakau telah digunakan untuk
membina elektrod komposit berasaskan arang hasil gabungan serbuk arang, grafit,
kobalt dan polivinil klorida (C-CG-Co-PVC) yang telah dicampurkan
mengikut komposisi berat tertentu dalam pelarut tetrahidrofuran (THF). Elektrod
komposit yang telah dibina kemudiannya digunakan sebagai elektrod kerja untuk
merawat sampel air bahan larut lesap melalui kaedah elektrokimia. Mikroskop
elektron imbasan tekanan boleh ubah (VPSEM) telah digunakan untuk mengkaji
sifat fizikal serbuk arang. Keputusan menunjukkan bahawa serbuk arang pokok
getah merupakan serbuk arang terbaik untuk membina elektrod komposit dalam
kajian ini kerana ia mempunyai banyak liang dan luas permukaan yang lebih
tinggi untuk penjerapan dan tindak balas berlaku. Mikroskop imbasan elektron
medan pancaran (FESEM) telah digunakan untuk memerhati permukaan elektrod yang
telah disediakan sebelum dan selepas elektrolisis bahan larut lesap. Keputusan
menunjukkan bahawa terdapat kehadiran lohong pada permukaan elektrod sebelum
dan selepas elektrolisis. Hal ini membantu memperbaiki proses pengoksidaan
elektrokimia bahan larut lesap yang telah menyebabkan peratus pengurangan
warna, COD, NH3-N, dan total P masing-masingnya tidak kurang
daripada 80%, 91%, 73%, dan 84%.
Kata kunci: bahan larut lesap tapak
pelupusan, serbuk arang, elektrod komposit, kaedah elektrokimia
References
1. Wu, J. J., Wu, C. C., Ma, H. W. and Chang, C. C. (2004). Treatment
of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54(7):
997-1003.
2. Kurniawan, T. A., Lo, W. H. and Chan, G. Y. (2006).
Physico-chemical treatments for removal of recalcitrant contaminants from
landfill leachate. Journal of hazardous materials, 129(1):
80-100.
3. Jumaah, M. A., Othman, M. R. and Yusop, M. R. (2016). Characterization
of leachate from Jeram sanitary landfill-Malaysia. International
Journal of ChemTech Research, 9(8): 571-574.
4. Xu, Z. Y., Zeng, G. M., Yang, Z. H., Xiao, Y., Cao, M., Sun, H. S.,
Ji, L. L. and Chen, Y. (2010). Biological treatment of landfill leachate with
the integration of partial nitrification, anaerobic ammonium oxidation and
heterotrophic denitrification. Bioresource Technology, 101(1):
79-86.
5. Cho, S. P., Hong, S. C. and Hong, S. I. (2002). Photocatalytic
degradation of the landfill leachate containing refractory matters and nitrogen
compounds. Applied Catalysis B: Environmental, 39(2): 125-133.
6. Lim, Y. N., Shaaban, M. G. and Yin, C. Y. (2009). Treatment of
landfill leachate using palm shell-activated carbon column: Axial dispersion
modeling and treatment
profile. Chemical Engineering Journal, 146(1): 86-89.
7. Neczaj, E., Okoniewska, E. and Kacprzak, M. (2005). Treatment of
landfill leachate by sequencing batch reactor. Desalination, 185(1):
357-362.
8. Galeano, L. A., Vicente, M. Á. and Gil, A. (2011). Treatment of
municipal leachate of landfill by Fenton-like heterogeneous catalytic wet
peroxide oxidation using an Al/Fe-pillared montmorillonite as active
catalyst. Chemical Engineering Journal, 178(15): 146-153.
9. Li, W., Hua, T., Zhou, Q., Zhang, S. and Li, F. (2010). Treatment
of stabilized landfill leachate by the combined process of
coagulation/flocculation and powder activated carbon adsorption. Desalination, 264(1):
56-62.
10. Hasar, H., Unsal, S. A., Ipek, U., Karatas, S., Cınar, O., Yaman,
C. and Kınacı, C. (2009). Stripping/flocculation/membrane bioreactor/reverse
osmosis treatment of municipal landfill leachate. Journal of Hazardous
Materials, 171(1): 309-317.
11. Tabet, K., Moulin, P., Vilomet, J. D., Amberto, A. and Charbit, F.
(2002). Purification of landfill leachate with membrane processes: Preliminary
studies for an industrial plant. Separation Science and Technology, 37(5):
1041-1063.
12. Bashir, M. J., Isa, M. H., Kutty, S. R. M., Awang, Z. B., Aziz, H.
A., Mohajeri, S. and Farooqi, I. H. (2009). Landfill leachate treatment by
electrochemical oxidation. Waste Management, 29(9): 2534-2541.
13. Jumaah, M. A. and Othman, M. R. (2015). Decolorization of landfill
leachate using electrochemical oxidation technique. In AIP Conference
Proceedings, 1678(1): 050032.
14. Jumaah, M. A. and Othman, M. R. (2015). Study the efficiency of
various metal powder composition electrodes based on landfill leachate
treatment. International Journal of ChemTech Research, 8(12):
559-563.
15. Martínez-Huitle, C. A. and Brillas, E. (2009). Decontamination of
wastewaters containing synthetic organic dyes by electrochemical methods: A
general review. Applied Catalysis B: Environmental, 87(3):
105-145.
16. Jumaah, M. A., Othman, M. R. and Yusop, M. R. (2016). Batch method
treatment of landfill leachate using charcoal composite. International
Journal of ChemTech Research, 9(8): 583-586.
17. American Public Health Association
(2005). Standard methods for the examination of water and wastewater, 21st
edition; American Public Health Association: Washington, D.C.
18. Hamdan, M. S., Nordin, N. and Amir, S. F. M. (2011).
Electrochemical behaviour of Ni and Ni-PVC electrodes for the electroxidation
of ethanol. Sains Malaysiana, 40(12): 1421-1427.
19. Gubernat, M., Tomala, J., Frohs, W., Fraczek-Szczypta, A. and
Blazewicz, S. (2016). De-agglomeration and homogenisation of nanoparticles in
coal tar pitch-based carbon materials. Journal of Nanoparticle Research, 18(3):
56-69.
20. Shendkar, C. D., Torane, R. C., Mundhe, K. S., Lavate, S. M.,
Pawar, A. B. and Deshpande, N. R. (2013). Characterization and application of
activated carbon prepared from waste weed. International Journal of
Pharmacy and Pharmaceutical Sciences, 5(2): 527-529.
21. Jumaah, M. A., Othman, M. R. and Yusop, M. R. (2016).
Electrochemical treatment of landfill leachate: Optimization of COD removal
using charcoal-graphite-cobalt-polyvinyl chloride electrode. Research
Journal of Pharmaceutical, Biological and Chemical Sciences, 7(5):
2812-2816.
22. Blanco, J., Torrades, F., De la Varga, M. and García-Montaño, J.
(2012). Fenton and biological-Fenton coupled processes for textile wastewater
treatment and reuse. Desalination, 286: 394-399.
23. Zakaria, Z., Nordin, N., Hasan, S. Z., Baharuddin, N. A., Jumaah,
M. A. and Othman, M. R. (2015). Decolorization of reactive orange 16 dye using
fabricated charcoal base metallic composite electrode. Malaysian
Journal of Analytical Sciences, 19(3): 493-502.
24. Zhang, L. L. and Zhao, X. S. (2009). Carbon-based materials as
supercapacitor electrodes. Chemical Society Reviews, 38(9):
2520-2531.
25. Ratnasingam, J., Ioras, F. and Wenming, L. (2011). Sustainability
of the rubber wood sector in Malaysia. Notulae Botanicae Horti
Agrobotanici Cluj-Napoca, 39(2): 305-311.
26. Sanroman, M. A., Pazos, M., Ricart, M. T. and Cameselle, C.
(2004). Electrochemical decolourisation of structurally different dyes. Chemosphere, 57(3):
233-239.
27. Chang, X., Thind, S. S. and Chen, A. (2014). Electrocatalytic
enhancement of salicylic acid oxidation at electrochemically reduced TiO2 nanotubes. ACS
Catalysis, 4(8): 2616-2622.
28. Jumaah, M. A. and Othman, M. R. (2015). Optimization of operating
conditions for landfill leachate treatment using electrochemical oxidation
technique. International Journal of ChemTech Research, 8(2):
783-787.
29. Chen, G. (2004). Electrochemical technologies in wastewater
treatment. Separation and Purification Technology, 38(1):
11-41.
30. Jumaah, M. A. and Othman, M. R. (2015). COD removal from landfill
leachate by electrochemical method using charcoal-PVC electrode. International
Journal of ChemTech Research, 8(12): 604-609.
31. Jumaah, M. A., Othman, M. R. and Zakaria, Z. (2015). Fabrication
of selected metal powder composite electrode for landfill leachate treatment
using electrochemical method. International Journal of Chemical
Sciences, 13(2): 943-954.
32. Jumaah, M. A., Othman, M. R., Yusop, M. R., Salimon, J., Khalaf,
B. and Khalik, W. M. A. W. M. (2017). Charcoal base metallic composite
electrode for wastewater treatment. Malaysian Journal of Analytical Sciences, 21(6): 1432-1437.