Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 227 - 237

DOI: 10.17576/mjas-2018-2202-07

 

 

 

THE ELECTROCHEMICAL BEHAVIOR OF ZINC OXIDE/REDUCED GRAPHENE OXIDE COMPOSITE ELECTRODE IN DOPAMINE

 

(Sifat Elektrokimia Elektrod Komposit Zink Oksida/Grafin Oksida Terturun dalam Dopamin)

 

Farhanini Yusoff1*, Ngai Tze Khing1, Chai Chee Hao1, Lee Pak Sang1, Nurul’ain Basyirah Muhamad1,

Noorashikin Md Saleh2

 

1School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Research Centre for Sustainable Process Technology,

Department of Chemical Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  farhanini@umt.edu.my

 

 

Received: 2 January 2018; Accepted: 6 March 2018

 

 

Abstract

Zinc oxide/reduced graphene oxide (ZnO/rGO) composite was synthesized via the modified Hummers’ method. The presence of ZnO composite on the rGO sheets was confirmed by Scanning Electron Microscope (SEM), X-Ray Diffractometer (XRD) and Fourier Transform Infrared (FTIR) spectrometer. FTIR result showed the formation of ZnO/rGO with the presence ZnO stretching peak and the surface of ZnO/rGO was found to have better morphology with functionalized groups attached to it. XRD analysis also confirms the formation of ZnO/rGO composite by wurtzite structured indexed peak of the diffractogram. The ZnO/rGO composite was drop on the surface of GCE by drop casting method to increase the electrocatalytic activities of bare GCE. The electrochemical behaviour of ZnO/rGO modified electrode shows the enhancement in electron transfer and the system is diffusion-controlled. The electrochemical studies also revealed that the ZnO/rGO/GCE dramatically increased the current response against the dopamine (DA), due to the synergistic effect emerged between ZnO and rGO. This attributed that ZnO/rGO/GCE could exhibit excellent electrocatalytic activity and effective electron transfer kinetics towards the oxidation of DA. Therefore, the ZnO/rGO/GCE could be used to determine the DA concentration and provide an ideal matrix for clinical applications.

 

Keywords:  zinc oxide, reduced graphene oxide, composite materials, dopamine, electrocatalysis

 

Abstrak

Komposit zink oksida/grafin oksida terturun (ZnO/rGO) telah disintesis melalui kaedah Hummer terubahsuai. Kehadiran komposit ZnO pada lapisan rGO telah diujikan oleh mikroskop imbasan elektron (SEM), Pembelauan sinar X (XRD) dan Inframerah transformasi Fourier (FTIR). Keputusan FTIR menunjukkan pembentukan ZnO/rGO dengan kehadiran puncak ZnO dan permukaan ZnO/rGO didapati mempunyai morfologi yang lebih baik dengan kumpulan berfungsi melekat padanya. Analisis XRD juga menunjukkan pembentukan komposit ZnO/rGO melalui diffraktogram indeks puncak struktrur wurtzit. Komposit ZnO/rGO telah diubahsuai dengan elektrod karbon berkaca (GCE) dengan menggunakan kaedah alas titis. Perlakuan elektrokimia ZnO/rGO/GCE menunjukkan peningkatan dalam pemindahan elektron dan sistem adalah proses serapan terkawal. Kajian elektrokimia mendedahkan bahawa respon arus ZnO/rGO/GCE meningkat terhadap DA, disebabkan kesan sinergi antara ZnO dan rGO. Ini disebabkan respon arus ZnO/rGO/GCE boleh mempamerkan aktiviti elektropemangkin yang berkesan terhadap kinetik pemindahan elektron DA. Oleh itu, ZnO/rGO/GCE boleh digunakan untuk menentukan kepekatan DA dan menjadi pemangkin sesuai untuk aplikasi klinikal.

 

Kata kunci:  zink oksida, grafin oksida terturun, bahan komposit, dopamin, elektropemangkin

 

References

1.       Hu, X., Qi, R., Zhu, J., Luo, Y., Jin, J. and Jiang, P. (2014). Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy. Journal of Applied Polymer Science, 131(2): 39754.

2.       Siciliano, C. A., Locke, J. L., Mathews, T. A., Lopez, M. F., Becker, H. C. and Jones, S. R. (2017). Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains. Alcohol, 58: 25 – 32.

3.       Kim, D., Lee. S. and Piao Y. (2017). Electrochemical determination of dopamine and acetaminophen using activated  graphene-nafion  modified  glassy carbon electrode. Journal of Electroanalytical Chemistry, 794: 221 - 228.

4.       Quan, D. P., Tuyen, D. P., Lam, T. D., Tram, P. T. N., Binh, N. H. and Viet, P. H. (2011). Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes. Colloids and Surfaces B: Bionterfaces, 88(2): 764 - 770.

5.       Wilson, G. S. and Johnson, M. A. (2008). In-vivo electrochemistry: What can we learn about living systems? Chemical Review, 108 (7): 2462 - 2481.

6.       Lakshmi, D., Bossi, A., Whitcombe, M. J., Chianella, I., Fowler, S. A., Subrahmanyam, S., Piletska, E. V. and Piletsky, S. A. (2009). Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Analytical Chemistry, 81(9): 3578 - 3584.

7.       Mahshid, S., Li, C., Mahshid, S. S., Askari, M., Dolati, A., Yang, L., Luo, S. and Cai, Q. (2011). Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles. Analyst, 136(11): 2322 - 2329.

8.       Fang, B., Wang, G., Zhang, W., Li, M. and Kan, X. (2005). Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis, 17(9): 744 - 748.

9.       Wang, W., Xu, G., Cui, X. T., Sheng, G. and Luo, X. (2014). Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosensors and Bioelectronics, 58: 153 - 156.

10.    Liu, X., Peng, Y., Qu, X., Ai, S., Han, R. and Zhu, X. (2011). Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Journal of Electroanalytical Chemistry, 654 (1-2): 72 - 78.

11.    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun’ko, Y., Boland, J., Niraj, P., Duesberg, G., Krishnamurti, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C. and Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9): 563 - 568.

12.    Shan, C., Tang, H., Wong, T., He, L. and Lee, S-T. (2012). Facile synthesis of a large quantity of graphene by chemical vapor deposition: an advanced catalyst carrier. Advanced Materials, 24(18): 2491 - 2495.

13.    Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y. M., Song, L. P. and Wei, F. (2011). Facile synthesis of graphene nanosheets via fe reduction of exfoliated graphite oxide. ACS Nano, 5(1): 191 - 198.

14.    Ling, Y. Y., Huang, Q. A., Zhu, M. S., Feng, D. X., Li, X. Z. and Wei, Y. (2013). A facile one-step electrochemical fabrication of reduced graphene oxide–multiwall carbon nanotubes–phospotungstic acid composite for dopamine sensing. Journal of Electroanalytical Chemistry, 693: 9 - 15.

15.    Zhang, F., Wang, Z., Zhang, Y., Zheng, Z., Wang, C., Du, Y. and Ye, W. (2012). Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode. Talanta, 93: 320 - 325.

16.    Wang, G., Shen, X., Wang, B., Yao, J. and Park, J. (2009). Synthesis and characterization of hydrophilic and organophilic graphene nanosheets. Carbon, 47(5): 1359 - 1364.

17.    Cui, X., Fang, X., Zhao, H., Li, Z. and Ren, H. (2017). An electrochemical sensor for dopamine based on polydopamine modified reduced graphene oxide anchored with tin dioxide and gold nanoparticles.  Analytical Methods, 36(9): 5322 - 5332.

18.    Chang, Z., Zhou, Y., Hao, L., Hao, Y., Zhu, X. and Xu, M. (2017). Simultaneous determination of dopamine and ascorbic acid using β-cyclodextrin/au nanopaerticles/graphene-modifie electrodes. Analytical Methods, 9(4): 664 - 671.

19.    Tang, L., Li, X., Ji, R., Teng, K. S., Tai, G., Ye, J., Wei, C. and Lau, S. P. (2012). Bottom-up synthesis of large-scale graphene oxide nanosheets. Journal of Materials Chemistry, 22(12): 24981 - 24982.

20.    Babu K. S., Reddy, R., Sujatha, C., Reddy, K. V. and Mallika, A. N. (2013). Synthesis and optical characterization of porous ZnO. Journal of Advanced Ceramic, 2(3): 260 - 265.

21.    Chen, Y. L., Hu, Z. A., Wang, H. W., Zhang, Z, Y., Yang, Y. Y. and Wu, H. Y. (2011). Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. The Journal of Physical Chemistry, 115(5): 2563 - 2571.

22.    Yusoff, F., Aziz, A., Mohamed, N. and Ghani, S. A. (2013). Synthesis and characterizations of BSCF at different pH as future cathode materials of fuel cells. International Journal of Electrochemical Science, 8(8): 10672 - 10687.

23.    Fritea, L., Goff, A. L., Putaux, J. L., Tertis, M., Cristea, C., Sãndulescu, R. and Cosnier, S. (2015). Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochimica Acta, 178: 108 - 112.

24.    Avendańo S. C., Angeles, G. A., Silva, M. T. R., Pina, G. R., Romo, M. R. and Pardavĕ, M. P. (2007). On the electrochemistry of dopamine in aqueous solution. Part 1: The role of [SDS] on the voltammetric behavior of dopamine on a carbon paste electrode. Journal of Electroanalytical Chemistry, 609(1): 17 - 26.

 




Previous                    Content                    Next