Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 227 - 237
DOI:
10.17576/mjas-2018-2202-07
THE
ELECTROCHEMICAL BEHAVIOR OF ZINC OXIDE/REDUCED GRAPHENE OXIDE COMPOSITE
ELECTRODE IN DOPAMINE
(Sifat
Elektrokimia Elektrod Komposit Zink Oksida/Grafin Oksida Terturun dalam Dopamin)
Farhanini Yusoff1*,
Ngai Tze Khing1, Chai Chee Hao1, Lee Pak Sang1,
Nurul’ain Basyirah Muhamad1,
Noorashikin Md
Saleh2
1School of Marine and Environmental Sciences,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Research Centre for Sustainable Process Technology,
Department
of Chemical Engineering, Faculty of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: farhanini@umt.edu.my
Received: 2
January 2018; Accepted: 6 March 2018
Abstract
Zinc oxide/reduced graphene oxide
(ZnO/rGO) composite was synthesized via the modified Hummers’ method. The presence
of ZnO composite on the rGO sheets was confirmed by Scanning Electron
Microscope (SEM), X-Ray Diffractometer (XRD) and Fourier Transform Infrared
(FTIR) spectrometer. FTIR result showed the formation of ZnO/rGO with the
presence ZnO stretching peak and the surface of ZnO/rGO was found to have
better morphology with functionalized groups attached to it. XRD analysis also
confirms the formation of ZnO/rGO composite by wurtzite structured indexed peak
of the diffractogram. The ZnO/rGO composite was drop on the surface of GCE by
drop casting method to increase the electrocatalytic activities of bare GCE.
The electrochemical behaviour of ZnO/rGO modified electrode shows the
enhancement in electron transfer and the system is diffusion-controlled. The
electrochemical studies also revealed that the ZnO/rGO/GCE dramatically
increased the current response against the dopamine (DA), due to the
synergistic effect emerged between ZnO and rGO. This attributed that
ZnO/rGO/GCE could exhibit excellent electrocatalytic activity and effective
electron transfer kinetics towards the oxidation of DA. Therefore, the
ZnO/rGO/GCE could be used to determine the DA concentration and provide an
ideal matrix for clinical applications.
Keywords: zinc oxide,
reduced graphene oxide, composite materials, dopamine, electrocatalysis
Abstrak
Komposit
zink oksida/grafin oksida terturun (ZnO/rGO) telah disintesis melalui kaedah Hummer
terubahsuai. Kehadiran komposit ZnO pada lapisan rGO telah diujikan oleh
mikroskop imbasan elektron (SEM), Pembelauan sinar X (XRD) dan Inframerah transformasi
Fourier (FTIR). Keputusan FTIR menunjukkan pembentukan ZnO/rGO dengan kehadiran
puncak ZnO dan permukaan ZnO/rGO didapati mempunyai morfologi yang lebih baik
dengan kumpulan berfungsi melekat padanya. Analisis XRD juga menunjukkan
pembentukan komposit ZnO/rGO melalui diffraktogram indeks puncak struktrur
wurtzit. Komposit ZnO/rGO telah diubahsuai dengan elektrod karbon berkaca (GCE)
dengan menggunakan kaedah alas titis. Perlakuan elektrokimia ZnO/rGO/GCE
menunjukkan peningkatan dalam pemindahan elektron dan sistem adalah proses
serapan terkawal. Kajian elektrokimia mendedahkan bahawa respon arus
ZnO/rGO/GCE meningkat terhadap DA, disebabkan kesan sinergi antara ZnO dan rGO.
Ini disebabkan respon arus ZnO/rGO/GCE boleh mempamerkan aktiviti
elektropemangkin yang berkesan terhadap kinetik pemindahan elektron DA. Oleh
itu, ZnO/rGO/GCE boleh digunakan untuk menentukan kepekatan DA dan menjadi
pemangkin sesuai untuk aplikasi klinikal.
Kata kunci: zink oksida, grafin oksida terturun, bahan komposit, dopamin,
elektropemangkin
References
1.
Hu,
X., Qi, R., Zhu, J., Luo, Y., Jin, J. and Jiang, P. (2014). Preparation and
properties of dopamine reduced graphene oxide and its composites of epoxy. Journal of Applied Polymer Science,
131(2): 39754.
2.
Siciliano,
C. A., Locke, J. L., Mathews, T. A., Lopez, M. F., Becker, H. C. and Jones, S.
R. (2017). Dopamine synthesis in alcohol drinking-prone and -resistant mouse
strains. Alcohol, 58: 25 – 32.
3.
Kim,
D., Lee. S. and Piao Y. (2017). Electrochemical determination of dopamine and
acetaminophen using activated graphene-nafion
modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 794: 221 - 228.
4.
Quan,
D. P., Tuyen, D. P., Lam, T. D., Tram, P. T. N., Binh, N. H. and Viet, P. H.
(2011). Electrochemically selective determination of dopamine in the presence
of ascorbic and uric acids on the surface of the modified nafion/single wall
carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes. Colloids and Surfaces B: Bionterfaces,
88(2): 764 - 770.
5.
Wilson,
G. S. and Johnson, M. A. (2008). In-vivo electrochemistry: What can we learn about living systems? Chemical Review, 108 (7): 2462 - 2481.
6.
Lakshmi,
D., Bossi, A., Whitcombe, M. J., Chianella, I., Fowler, S. A., Subrahmanyam,
S., Piletska, E. V. and Piletsky, S. A. (2009). Electrochemical sensor for
catechol and dopamine based on a catalytic molecularly imprinted
polymer-conducting polymer hybrid recognition element. Analytical Chemistry, 81(9): 3578 - 3584.
7.
Mahshid,
S., Li, C., Mahshid, S. S., Askari, M., Dolati, A., Yang, L., Luo, S. and Cai,
Q. (2011). Sensitive determination of dopamine in the presence of uric acid and
ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles.
Analyst, 136(11): 2322 - 2329.
8.
Fang,
B., Wang, G., Zhang, W., Li, M. and Kan, X. (2005). Fabrication of Fe3O4 nanoparticles
modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis, 17(9): 744 - 748.
9.
Wang,
W., Xu, G., Cui, X. T., Sheng, G. and Luo, X. (2014). Enhanced catalytic and dopamine sensing properties of electrochemically
reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosensors and Bioelectronics, 58: 153 -
156.
10.
Liu,
X., Peng, Y., Qu, X., Ai, S., Han, R. and Zhu, X. (2011). Multi-walled carbon
nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode
for determination of dopamine and uric acid under coexistence of ascorbic acid.
Journal of Electroanalytical Chemistry,
654 (1-2): 72 - 78.
11.
Hernandez,
Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T.,
Holland, B., Byrne, M., Gun’ko, Y., Boland, J., Niraj, P., Duesberg, G.,
Krishnamurti, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C. and
Coleman, J. N. (2008). High-yield
production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9): 563 - 568.
12.
Shan,
C., Tang, H., Wong, T., He, L. and Lee, S-T. (2012). Facile synthesis of a
large quantity of graphene by chemical vapor deposition: an advanced catalyst
carrier. Advanced Materials, 24(18): 2491
- 2495.
13.
Fan, Z. J., Kai,
W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y. M., Song, L. P. and Wei, F.
(2011). Facile synthesis of graphene nanosheets via fe reduction of exfoliated
graphite oxide. ACS Nano, 5(1): 191 -
198.
14.
Ling,
Y. Y., Huang, Q. A., Zhu, M. S., Feng, D. X., Li, X. Z. and Wei, Y. (2013). A facile one-step electrochemical fabrication of
reduced graphene oxide–multiwall carbon nanotubes–phospotungstic acid composite
for dopamine sensing. Journal of
Electroanalytical Chemistry, 693: 9 - 15.
15.
Zhang,
F., Wang, Z., Zhang, Y., Zheng, Z., Wang, C., Du, Y. and Ye, W. (2012). Simultaneous electrochemical determination of uric
acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite
film modified electrode. Talanta, 93:
320 - 325.
16.
Wang,
G., Shen, X., Wang, B., Yao, J. and Park, J. (2009). Synthesis and
characterization of hydrophilic and organophilic graphene nanosheets. Carbon, 47(5): 1359 - 1364.
17.
Cui, X., Fang, X., Zhao, H., Li,
Z. and Ren, H. (2017). An electrochemical sensor for dopamine based on
polydopamine modified reduced graphene oxide anchored with tin dioxide and gold
nanoparticles. Analytical Methods, 36(9): 5322 - 5332.
18.
Chang, Z., Zhou, Y., Hao, L., Hao,
Y., Zhu, X. and Xu, M. (2017). Simultaneous determination of dopamine and
ascorbic acid using β-cyclodextrin/au nanopaerticles/graphene-modifie electrodes.
Analytical Methods, 9(4): 664 - 671.
19.
Tang,
L., Li, X., Ji, R., Teng, K. S., Tai, G., Ye, J., Wei, C. and Lau, S. P.
(2012). Bottom-up synthesis of
large-scale graphene oxide nanosheets. Journal of Materials Chemistry, 22(12): 24981 - 24982.
20.
Babu
K. S., Reddy, R., Sujatha, C., Reddy, K. V. and Mallika, A. N. (2013).
Synthesis and optical characterization of porous ZnO. Journal of Advanced Ceramic, 2(3): 260 - 265.
21.
Chen,
Y. L., Hu, Z. A., Wang, H. W., Zhang, Z, Y., Yang, Y. Y. and Wu, H. Y. (2011).
Zinc oxide/reduced graphene oxide composites and electrochemical capacitance
enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc
oxide matrix. The Journal of Physical
Chemistry, 115(5): 2563 - 2571.
22.
Yusoff,
F., Aziz, A., Mohamed, N. and Ghani, S. A. (2013). Synthesis and characterizations
of BSCF at different pH as future cathode materials of fuel cells. International Journal of Electrochemical
Science, 8(8): 10672 - 10687.
23.
Fritea,
L., Goff, A. L., Putaux, J. L., Tertis, M., Cristea, C., Sãndulescu, R. and
Cosnier, S. (2015). Design of a reduced-graphene-oxide composite electrode from
an electropolymerizable graphene aqueous dispersion using a
cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochimica Acta, 178: 108 - 112.
24.
Avendańo
S. C., Angeles, G. A., Silva, M. T. R., Pina, G. R., Romo, M. R. and Pardavĕ,
M. P. (2007). On the electrochemistry of dopamine in aqueous solution. Part 1: The
role of [SDS] on the voltammetric behavior of dopamine on a carbon paste
electrode. Journal of Electroanalytical Chemistry,
609(1): 17 - 26.