Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 346 - 352

DOI: 10.17576/mjas-2018-2202-22

 

 

 

BIOLOGICAL REMOVAL OF AMMONIA BY NATURALLY GROWN BACTERIA IN SAND BIOFILTER

 

(Penyingkiran Ammonia Secara Biologi Menggunakan Bakteria Semulajadi dalam Biopenuras Pasir)

 

Fuzieah Subari1, 2*, Siti Rozaimah Sheikh Abdullah1, Hassimi Abu Hasan1, Norliza Abd. Rahman1

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  fuzieahs@gmail.com

 

 

Received: 15 February 2017; Accepted: 2 January 2018

 

 

Abstract

Drinking water treatment through biological process is commonly applied in developed countries, but not yet in developing countries such as Malaysia. The non-existence of biological treatment has urged drinking water treatment plant operator in Malaysia to shut down the plants whenever there are ammonia contaminations. This is to avoid the formation of disinfection byproducts (DBPs), which are toxic and carcinogenic, when ammonia reacts with chlorine as the disinfectant. The study aims to develop a biological drinking water treatment for to remove ammonia in a biological sand filter column. The derived biofilm, a mixed bacterial consortium is naturally cultured from surface lake water, hence eliminating the potential of pathogenic microorganism occurrence, which is not suitable for drinking water application. The biofilm was inoculated in the batch down flow column consisting of heterogeneous fine sand with diameter of 1.2 mm (top layer) and 6.7 mm (bottom layer). The study was conducted by varying the flowrate (0.09, 0.13, and 0.18 m3/h) and hydraulic retention time (HRT) (5 and 24 hours). The water sample was taken at different depths of 0.05 m (SP4), 0.1 m (SP3) and 0.2 m (SP2) from the column base for the ammonia analysis. Significant reduction of ammonia with 96-98% was observed at 0.09 m3/h and 24 hours and the final treated effluent had complied with the stringent regulation stipulated by the Malaysia, Ministry of Health that is lower than 1.5 mg/L.

 

Keywords:  ammonium removal, biological treatment, drinking water treatment plant, sand biofilter

 

Abstrak

Rawatan air minuman menggunakan proses biologi telah lama digunakan di negara maju tetapi belum lagi di negara membangun seperti Malaysia. Ketiadaan teknologi rawatan air secara biologi ini telah memaksa operator di loji rawatan air minuman menutup loji rawatan air minuman setiap kali berlakunya pencemaran ammonia. Ianya dilakukan untuk mengelakkan pembentukan hasil sampingan disinfektan (DBP) yang toksik dan karsinogen apabila ammonia bertindak dengan klorin yang digunakan sebagai disinfektan. Objektif kajian ini dijalankan adalah untuk membangunkan satu rawatan air secara biologi untuk menyingkir ammonia dalam biopenuras pasir. Biofilem yang digunakan, merupakan konsortium bakteria campuran, di inokulasi secara semula jadi daripada air tasik untuk mengurangkan kebarangkalian kehadiran bakteria patogen memandangkan aplikasi sistem ini dibangunkan untuk rawatan air minuman. Biofilem di inolukasi dalam kelompok turus dengan aliran ke bawah yang menempatkan pasir bersaiz berbeza dengan garis pusat 1.2mm (lapisan atas) dan 6.7mm (lapisan bawah). Kajian dilakukan dengan mengubah kadar aliran (0.09, 0.13 dan 0.18 m3/jam) dan masa penahanan hidraulik (HRT) (5 dan 24 jam). Sampel air di ambil pada ketinggian berbeza iaitu 0.05 m (SP4), 0.1 m (SP3) dan 0.2 m (SP2) dari tapak turus untuk analisis kandungan ammonia. Pengurangan ammonia sebanyak 96-98% di 0.09 m3/jam and 24 jam dengan air terawat telah mematuhi had kawalan yang telah ditetapkan oleh kemeterian kesihatan Malaysia iaitu dibawah 1.5 mg/L.

 

Kata kunci:  penyingkiran ammonia, rawatan biologi, loji rawatan air minuman, biopenuras pasir

 

References

1.       Ab Razak, N. H., Praveena, S. M., Aris, A. Z. and Hashim, Z. (2015). Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). Journal of Epidemiology and Global Health, 5(4): 297-310.

2.       Aslan, S. and Cakici, H. (2007). Biological denitrification of drinking water in a slow sand filter. Journal of Hazardous Materials, 148(1–2): 253–258.

3.       Sadiq, R. and Rodriguez, M. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of The Total Environment, 321(1–3): 21–46.

4.       Abu Hasan, H., Sheikh Abdullah, S. R., Kamarudin, S. K. and Tan Kofli, N. (2011). Ammonia and manganese problems in Malaysian drinking water treatment. World Applied Sciences Journal, 12: 1890–1896.

5.       Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K. and van Lier, J. B. (2012). A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 122: 196–206.

6.       Kulkarni, P. and Chellam, S. (2010). Disinfection by-product formation following chlorination of drinking water: Artificial neural network models and changes in speciation with treatment. Science of The Total Environment, 408(19): 4202–4210.

7.       Primo, O., Rivero, M. J., Urtiaga, A. M. and Ortiz, I. (2009). Nitrate removal from electro-oxidized landfill leachate by ion exchange. Journal of Hazardous Materials, 164(1), 389–393.

8.       Sahabi, D. M., Takeda, M., Suzuki, I. and Koizumi, J. (2009). Removal of Mn2+ from water by “aged” biofilter media: The role of catalytic oxides layers. Journal of Bioscience and Bioengineering, 107(2): 151–157.

9.       Jun, Y. and Wenfeng, X. (2009). Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters. Bioresource Technology, 100(17): 3869–3876.

10.    Leyva-Díaz, J. C., González-Martínez., A., González-López, J., Muñío, M. M. and Poyatos, J. M. (2015). Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor for wastewater treatment. Chemical Engineering Journal, 259: 692–702.

11.    Nicolaisen, M. H. and Ramsing, N. B. (2002). Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal Microbiol Methods, 50(2): 189–203.

12.    Bar-Zeev, E., Belkin, N., Liberman, B., Berman, T. and Berman-Frank, I. (2012). Rapid sand filtration pretreatment for SWRO: Microbial maturation dynamics and filtration efficiency of organic matter. Desalination, 286: 120–130.

13.    Gomes, I. B., Simões, M. and Simões, L. C. (2014). An overview on the reactors to study drinking water biofilms. Water Research, 62: 63–87.

14.    Ministry of Health (2012). Drinking water quality standard. http://kmam.moh.gov.my/public-user/drinking-water-quality-standard.html [Access online 1 December 2015].

15.    Campos, L. C., Su, M. F. J., Graham, N. J. D. and Smith, S. R. (2002). Biomass development in slow sand filters. Water Research, 36(18): 4543–4551.

16.    Codony, F., Morató, J. and Mas, J. (2005). Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Research, 39(9): 1896–1906.

 

 




Previous                    Content                    Next