Malaysian Journal of Analytical Sciences Vol 22 No 1 (2018): 72 - 79

DOI: 10.17576/mjas-2018-2201-09

 

 

 

FORENSIC GAS CHROMATOGRAPHY ANALYSIS OF TIME ELAPSED GASOLINE IN FIRE SCENE INVESTIGATION

 

(Analisis Kromatografi Gas Forensik bagi Gasolin yang Masanya Berlalu dalam Penyiasatan Tempat Kebakaran)

 

Pei Wen Lim, Ahmad Fahmi Lim Abdullah, Kah Haw Chang*

 

Forensic Science Programme, School of Health Sciences,

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

 

*Corresponding author:  changkh@usm.my

 

 

Received: 25 September 2017; Accepted: 29 January 2018

 

 

Abstract

Gasoline residues present in fire debris serves as important evidence in arson investigation. In view of safety considerations, fire investigators do not enter fire scene immediately after fire extinguishing activity. In this perspective, gasoline residue in burnt carpet was analysed in relation to time elapsed after a fire to evaluate the influence of evaporative weathering process on the detection of gasoline traces from fire debris. Simulating fire condition, carpet samples poured with gasoline were burned, and the fire was extinguished with water before exposure to varying evaporation time at room temperature. All burnt carpet samples were then extracted by hexane and analysed using gas chromatography-flame ionisation detector. Selected peaks were then subjected to principal component analysis (PCA) for clustering. Experimental results revealed rapid evaporation of gasoline during the first 30 minutes, followed by continuous but non-linear decrease up to one-month interval. Four clusters were found in the PCA plots wherein samples that were subjected to less than nine hours exposure were located close to positive control and could be distinguished from the rest. Hence, it is recommended that safety measures should be completed within nine hours.

 

Keywords:  forensic science, fire scene, gasoline detection, gas chromatography, time elapsed

 

Abstrak

Kehadiran sisa-sisa gasolin pada serpihan kebakaran ialah bukti penting dalam penyiasatan arson. Oleh kerana pertimbangan keselamatan, penyiasat-penyiasat kebakaran tidak memasuki tempat kejadian kebakaran sejurus selepas aktiviti pemadaman api. Dalam perspektif ini, sisa gasolin pada permaidani terbakar telah dianalisis untuk dikaitkan dengan masa berlalu selepas suatu kebakaran, bertujuan untuk menilai kesan proses sejatan terhadap pengesanan gasolin surih daripada serpihan kebakaran. Menerusi simulasi keadaan kebakaran sebenar, sampel permaidani yang dicurahkan dengan gasolin telah dibakar, dan api tersebut dipadamkan dengan air sebelum didedahkan kepada pelbagai tempoh penyejatan pada suhu bilik. Kesemua sampel permaidani terbakar kemudian tertakluk kepada pengekstrakan heksana dan dianalisis menggunakan kromatografi gas-pengesan pengionan nyalaan. Puncak-puncak terpilih kemudiannya tertakluk kepada analisis komponen utama (PCA) untuk tujuan pengelompokan. Keputusan eksperimen telah menunjukkan penyejatan pesat gasolin pada 30 minit pertama, diikuti dengan penurunan secara berterusan tidak linear sehingga tempoh satu bulan. Empat kelompok telah diperolehi dalam plot PCA dan sampel yang didedahkan pada jangka masa kurang daripada sembilan jam terletak berdekatan dengan kawalan positif dan boleh dibezakan daripada yang lain. Justeru, adalah disyorkan bahawa langkah keselamatan perlu diselesaikan dalam jangka masa sembilan jam.

 

Kata kunci:  sains forensik, tempat kejadian kebakaran, pengesanan gasolin, kromatografi gas, masa berlalu

 

References

1.       De Haan, J. D. and Icove, D. J. (2011). Kirk's fire investigation. Pearson Higher Ed.

2.       Fire and Rescue Department Malaysia. (2016). State/District Social Statistics Malaysia 2016. Department of Statistics Malaysia.

3.       The Star. (2017). Fire department confirms tahfiz school fire deliberately ignited. http://www.thestar.com.my/ videos/2017/09/21/fire-department-confirms-tahfiz-school-fire-deliberately-ignited/.

[Access online 23 December 2017].

4.       Redsicker, D. R. and O'Connor, J. J. (1996). Practical fire and arson investigation. CRC Press.

5.       Thomson N. (2001). Technology & engineering fire hazards in industry. Elsevier, Salford.

6.       Stauffer, E., Dolan, J. A. and Newman, R. (2007). Fire debris analysis. Academic Press.

7.       Baechler S., Comment S., and Delemont O. (2010). Extraction and concentration of vapors from fire debris for forensic purposes: evaluation of the use of radiello passive air sampler. Talanta, 82(4):1247 - 1253.

8.       Cacho, J. I., Campillo, N., Aliste, M., Vinas, P. and Hernandez-Cordoba, M. (2014). Headspace sorptive extraction  for  the  detection  of  combustion  accelerants  in fire debris. Forensic Science International, 238: 26 - 32.

9.       Almirall, J. R. and Furton, K. G. (2016). Analysis and interpretation of fire scene evidence. CRC Press.

10.    ASTM. (2015). E1386-15 Standard practice for separation of ignitable liquid residues from fire debris samples by solvent extraction. ASTM International, West Conshohocken.

11.    Tan, B., Hardy, J. K. and Snavely, R. E. (2000). Accelerant classification by gas chromatography/mass spectrometry and multivariate pattern recognition. Analytica Chimica Acta, 422: 37 - 46.

12.    Ribeiro, J., Teófilo, R., Augusto, F. and Ferreira, M. (2010). Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis. Chemometrics and Intelligent Laboratory Systems, 102: 45 - 52.

13.    Samri, M. A. S. and Chang K. H. (2016). Gas chromatography based forensic analysis of gasoline from burnt carpets  retrieved  using  different  fire extinguishing methods. Malaysian Journal of Forensic Sciences, 7(1): 39 - 44.

14.    ASTM. (2014). E1618-06 standard test methods for ignitable liquid residues in extracts from fire debris samples by gas chromatography-mass spectrometry. ASTM International, West Conshohocken.

15.    Prather, K. R., McGuffin, V. L. and Waddell Smith, R. (2012). Effect of evaporation and matrix interferences on the association of simulated ignitable liquid residues to the corresponding liquid standard. Forensic Science International, 222(1-3): 242 - 251.

16.    Martín-Alberca, C., Ortega-Ojeda, F. E. and Garcia-Ruiz, C. (2016). Analytical tools for the analysis of fire debris: A review: 2008–2015. Analytica Chimica Acta, 928: 1 - 19.

17.    Folkman, T., Kuehl, A., Groves, R. and Beveridge, A. (1990). Evaporation rate of gasoline from shoes, clothing, wood and carpet materials and kerosene from shoes and clothing. Canadian Society of Forensic Science Journal, 23: 49 - 59.

18.    Darrer, M., Jacquemet-Papilloud, J. and Delémont, O. (2008). Gasoline on hands: Preliminary study on collection and persistence. Forensic Science International, 175: 171 - 178.

19.    Dhabbah, A. M., Al-Jaber, S. S., Al-Ghamdi, A. H. and Aqel, A. (2014). Determination of gasoline residues on carpets by SPME–GC-MS technique. Arabian Journal for Science and Engineering, 39: 6749 - 6756.

20.    Mach, M. (1977). Gas chromatography-mass spectrometry of simulated arson residue using gasoline as an accelerant. Journal of Forensic Sciences, 22: 348 - 357.

 




Previous                    Content                    Next