Malaysian Journal of Analytical Sciences Vol 22 No 1 (2018): 54 - 63

DOI: 10.17576/mjas-2018-2201-07

 

 

 

MICROEMULSION ELECTROKINETIC CHROMATOGRAPHY COUPLED WITH DISPERSIVE MICRO-SOLID PHASE EXTRACTION FOR DETERMINATION OF ISOFLAVONES IN SOYBEAN PRODUCTS

 

(Kromatografi Elektrokinetik Mikro-Emulsi Berganding dengan Pengekstrakan Fasa Pepejal Mikro Serakan bagi Pengenalpastian Isoflavon di dalam Produk Kacang Soya)

 

Khaulah Ab Rahim1, Mohd Marsin Sanagi1,2*, Dadan Hermawan3, Wan Aini Wan Ibrahim1,2, Aemi Syazwani Abdul Keyon1 

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Department of Chemistry, Faculty of Science and Engineering,

Universitas Jenderal Soedirman (UNSOED), Purwokerto, Indonesia

 

*Corresponding author:  marsin@kimia.fs.utm.my 

 

 

Received: 26 August 2017; Accepted: 27 December 2017

 

 

Abstract

A new method based on microemulsion electrokinetic chromatography (MEEKC) coupled with dispersive micro solid phase extraction (D-µ-SPE) was developed for the determination of isoflavones in soy products. D-µ-SPEs of real samples were carried out using multi-walled carbon nanotubes (MWCNTs) as adsorbent prior to MEEKC. Separations of selected isoflavones namely daidzein, genistein and formononetin by MEEKC were carried out using fresh daily-prepared microemulsion background electrolyte (BGE). The optimized MEEKC conditions for the separation of isoflavones were 4 mM borate buffer pH 8.5, 6.6% (w/v) 1-butanol, 0.9% (w/v) sodium dodecyl sulphate, 0.75% (w/v) ethyl acetate, 3% (w/v) acetonitrile at 3 s injection time, 27 kV and 35 °C. Meanwhile, the optimum D-m-SPE conditions were 5 mg of MWCNTs and 300 µL of methanol as desorption solvent. Under the optimized conditions, the developed D-µ-SPE-MEEKC method showed good linearity in the concentration range of 1-10 mg/L with coefficients of determination (r2) > 0.99 and limits of detection of 0.27-0.95 mg/L. The method was successfully applied to the determination of isoflavones in five soybean products namely soy supplement, tofu, tempeh, egg tofu and fujook and good recoveries were obtained in the range of 74.5-112.5% with RSDs of < 3%. The method has proved to be simple and offers low consumption of organic solvent and relatively short analysis time, thus it is a potentially viable green alternative method for extraction and determination of isoflavones in soybean products.

 

Keywords: microemulsion electrokinetic chromatography, background electrolyte, dispersive micro solid phase extraction, isoflavones, soybean products

 

Abstrak

Satu kaedah baharu berasaskan kromatografi elektrokinetik mikroemulsi (MEEKC) berganding dengan pengekstrakan fasa pepejal mikro serakan (D-μ-SPE) telah dibangunkan bagi menentukan isoflavon di dalam produk kacang soya. D-μ-SPE sampel sebenar telah dijalankan menggunakan tiub nano karbon dinding berganda (MWCNT) sebagai penjerap sebelum MEEKC. Pemisahan isoflavon terpilih iaitu daidzein, genistein dan formononetin dengan MEEKC telah dijalankan menggunakan mikroemulsi elektrolit latar belakang (BGE) baharu yang disediakan setiap hari. Keadaan optimum MEEKC untuk pemisahan isoflavon ialah 4 mM penimbal borat pH 8.5, 6.6% (w/v) 1-butanol, 0.9% (w/v) natrium dodekil sulfat, 0.75% (w/v) etil asetat, 3% (w/v) asetonitril pada masa suntikan 3 s, 27 kV dan  35°C. Sementara itu, keadaan optimum untuk pengekstrakan ialah 5 mg MWCNT dan 300 µL metanol sebagai pelarut penyaherapan. Di bawah keadaan optimum, kaedah D-µ-SPE-MEEKC yang dibangunkan menunjukkan kelinearan yang baik dalam julat 1-10 mg/L dengan pekali penentuan (r2) > 0.99 dan had pengesanan 0.27-0.95 mg/L. Kaedah D-µ-SPE-MEEKC telah berjaya digunakan dalam penentuan isoflavon di dalam lima produk soya iaitu makanan tambahan soya, tofu, tempe, tauhu telur dan kulit tauhu dengan  kadar pengembalian 74.5 – 112.5% dan sisihan piawai relatif (RSD) < 3%. Kaedah ini terbukti mudah dan ia menggunakan pelarut organik yang sedikit dan memberi masa analisis yang cepat, justeru berpotensi sebagai kaedah hijau berdaya saing bagi pengekstrakan dan penentuan isoflavon di dalam produk kacang soya.

 

Keywords: Kromatografi elektrokinetik mikroemulsi, elektrolit latar belakang, pengekstrakan fasa pepejal mikro serakan, isoflavon, produk kacang soya

 

References

1.       Rangel, M. B., Zamarreno, M. M. D., Martinez, R. C. and Alvarez, J. D. (2012). Analysis of isoflavones in soy drink by capillary electrophoresis coupled with electrospray ionization mass spectrometry. Analytica Chimica Acta, 709: 113 – 119.

2.       Achouri, A., Boye, J. I. and Belanger, D. (2005). Soybean isoflavones: Efficiency of extraction conditions and effect of food type on extractability. Food Research International, 38: 1199 – 1204.

3.       Sturtz, M., Lander, V., Schimd, W. and Winhalter, P. (2008). Quantitative determination of isoflavones in soy based nutritional supplements by high-performance liquid chromatography. Journal of Consumer Protection and Food Safety, 3: 127 – 136.

4.       Taku, K., Melby, K. M., Takebayashi, J., Mizuno, S., Ishimi, Y., Omori. T. and Watanabe, S. (2010). Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Asia Pacific Journal of Clinical Nutrition, 19: 33 – 42.

5.       Ming, S. J., Li, S. B., Rong, Y. S, Hua. Y. and Kikuchi, A. (2011). Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agricultural Sciences in China, 1: 70 – 77.

6.       Garc′ia, M. C., Marina, M. L. and Torre, M. (2000). Determination by perfusion reversed-phase high-performance liquid chromatography of the soybean protein content of commercial soybean products prepared directly from whole soybeans.  Journal of Chromatography A, 880: 37 – 46.

7.       Magiera, S., Uhlschmied, C., Rainerb, M., Huck, C. W., Baranowska, I. and Bonn, G. K. (2011). GC-MS method for the simultaneous determination of blockers, flavonoids, isoflavones and their metabolites in human urine. Journal of Pharmaceutical and Biomedical Analysis, 56: 93 – 102.

8.       Xiao, M., Ye, J., Tang, X. and Huang, Y. (2011). Determination of soybean isoflavones in soybean meal and fermented soybean meal by micellar electrokinetic capillary chromatography. Food Chemistry, 126: 1488 – 1492.

9.       Altria, K. D. (2000). Background theory and applications of microemulsion electrokinetic chromatography. Journal of Chromatography A, 892: 171 – 186.

10.    Mahuzier, P. E., Aurora, M. S., Clark, B. J., Hackmann, E. R. M. and Altria, K. D. (2003). An introduction to the theory and application of microemulsion electrokinetic chromatography. LC-GC Europe, 16(1): 22 – 29.

11.    Jandera, P., Fischer, J., Jebava, J. and Effenberger, H. (2001). Characterization of retention in micellar high performance liquid chromatography and in micellar electrokinetic chromatography with reduced flow. Journal of Chromatography, 914: 233 – 244

12.    Nakamura, H., Sano, A. and Matsuura, K. (1998). Determination of micelle concentration of anionic surfactant by capillary electrophoresis using 2-naphthalenemethanol as a marker for micelle formation. Journal of Analytical Science, 14, 379-372

13.    Puyana, M. C., Crego, A. L. and Marina, M. L. (2008). Recent advances in the analysis of antibiotics by CE and CEC. Electrophoresis, 29: 274 – 293.

14.    McEvoy, E., Marsh, A., Altria, K., Donegan, S. and Power, J. (2007). Recent advances in the development and application of microemulsion EKC. Electrophoresis, 28: 193 – 207.

15.    Ryan, R., Altria, K.D., Donegan, S. and Power, J. (2013). Developments in the methodology and application of microemulsion electrokinetic chromatography. Electrophoresis, 34: 154177.

16.    Chuerkaoui, S. and Veuthey, J. L. (2002). Micellar and microemulsion electrokinetic chromatography of selected anesthetic drugs. Journal of Separation Science, 25: 10731078.

17.    Huang, M. C., Chen, H. C., Fu, S. C. and Ding, W. H. (2013). Determination of volatile n-nitrosamines in meat products by microwave-assisted extraction coupled with dispersive micro solid-phase extraction and gas chromatography- chemical ionization mass spectrometry. Food Chemistry, 138: 227233.

18.    Miola, F. M., Snowden, M. J. and Altria, K. D. (1998). The use of microemulsion electrokinetic chromatography in pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 18: 785797.

19.    Himmelsbach, M., Haunschmidt, M., Buchberger, W. and Klampfl, C. W. (2007). Microemulsion electrokinetic chromatography with on-line atmospheric pressure. Analytical Chemistry, 79: 15641568.

20.    Soto, J. M. J., Cardenas, S. and Valcarcel, M. (2012). Dispersive micro solid-phase extraction of triazines from waters using oxidized single-walled carbon nanohorns as sorbent. Journal of Chromatography A, 1245: 17 – 23.

21.    Zhou, Y. G., Chen, X. H., Pan. S. D., Zhu, H. and Shen, H. Y. (2013). Simultaneous analysis of eight phenolic environmental estrogens in blood using dispersive micro-solid-phase extraction combined with ultra-fast liquid chromatography-tandem mass spectrometry. Talanta, 115: 787 – 797.

22.    Liao, Q. G.,  Zhou, Y. M., Luo L. G., Wang, L. B. and Feng, H. X. (2014). Determination of twelve herbicides in tobacco by a combination of solid–liquid–solid dispersive extraction using multi-walled carbon nanotubes, dispersive liquid-liquid micro-extraction, and detection by GC with triple quadrupole mass spectrometry. Microchimica Acta, 181: 163 – 169.

23.    Murphy, P. A., Barua, K. and Hauck, C. C. (2002). Solvent extraction selection in the determination of isoflavones in soy foods. Journal of Chromatography B, 777: 129 – 138.

 




Previous                    Content                    Next