Malaysian Journal of Analytical Sciences Vol 22 No 1 (2018): 95 - 106

DOI: 10.17576/mjas-2018-2201-12

 

 

 

CO-SENSITIZATION OF NATURAL SENSITIZERS EXTRACTED FROM RENGAS (Gluta spp.) AND MENGKULANG (Heritiera elata) WOOD WITH RUTHENIUM DYE (N719) TO ENHANCE THE PERFORMANCE OF DYE-SENSITIZED SOLAR CELLS

 

(Ko-Pemekaan Pemeka Semulajadi Disari daripada Kayu Rengas (Gluta Spp.) dan Mengkulang (Heritiera elata) dengan Pewarna Rutenium (N719) untuk Meningkatkan Prestasi Sel Solar Terpeka Pewarna)

 

Nur  Ezyanie Safie1, Norasikin Ahmad Ludin1*, Norul Hisham Hamid2, Mohd Sukor Suait1, Mohd Asri Mat-Teridi1, Suhaila Sepeai1, Mohd Adib Ibrahim1, Kamaruzzaman Sopian1, Hironori Arakawa3

 

1Solar Energy Research Institute (SERI),

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2 Faculty of Forestry,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3 Department of Industrial Chemistry, Faculty of Engineering,

Tokyo University of Science, 162-0826, Japan

 

*Corresponding author:  sheekeen@ukm.edu.my

 

 

Received: 12 April 2017; Accepted: 1 September 2017

 

 

Abstract

In this study, photovoltaic performance was improved when two natural sensitizers, namely, rengas (Gluta spp.) and mengkulang (Heritiera elata), were mixed with ruthenium (N719) sensitizer. Five different ratios were prepared and their performances were compared with individual sensitizers. The components of the sensitizers were analyzed via ultraviolet–visible spectrophotometry and Fourier transform infrared spectroscopy. The band gap values and the highest occupied molecular orbitallowest unoccupied molecular orbital (HOMO-LUMO) levels were calculated using data obtained from photoluminescence analysis and cyclic voltammetry. The mengkulang: N719 (80%:20%) sensitizer exhibits the highest conversion efficiency (ŋ), which is 0.58% with an open circuit voltage (Voc) of 0.63 V, a short circuit photocurrent density (Jsc) of 2.1 mA/cm2, and a fill factor (ff) of 0.44. By contrast, the individual mengkulang sensitizer presents a poor conversion efficiency (ŋ) of 0.16%.

 

Keywords:  natural sensitizer, mixed sensitizer, band gap, HOMO–LUMO level

 

Abstrak

Dalam kajian ini, prestasi fotovoltik telah bertambah baik apabila dua pemeka yang semula jadi, iaitu, rengas (Gluta spp.) dan mengkulang (Heritiera elata), telah di campur dengan pemeka rutenium (N719). Lima nisbah yang berbeza telah disediakan dan prestasi mereka dibandingkan dengan pemeka individu. Komponen pemeka dianalisis melalui spektrofotometri ultralembayung cahaya nampak dan spektroskopi inframerah transformasi Fourier. Nilai jurang jalur dan aras orbit molekul tertinggi yang diduduki - orbit molekul terendah yang diduduki (HOMO-LUMO) dikira menggunakan data yang diperolehi daripada analisis kefotopendarcahayaan dan voltammetri berkitar. Pemeka mengkulang:N719 (80%: 20%) mempamerkan kecekapan penukaran tertinggi (ŋ), iaitu 0.58% dengan voltan litar terbuka (Voc) 0.63 V, kepadatan fotoarus litar pintas (Jsc) sebanyak 2.1 mA/cm2 dan faktor isi (ff) daripada 0.44. Sebaliknya, pemeka individu mengkulang memberikan kecekapan penukaran terendah (ŋ) 0.16%.

 

Kata kunci:  pemeka semula jadi, pemeka campuran, jurang jalur, aras HOMO-LUMO

 

References

1.       Hua, Y., Chang, S., Wang, H., Huang, D., Zhao, J., Chen, T. and Zhu, X. (2013). New phenothiazine-based dyes for efficient dye-sensitized solar cells: Positioning effect of a donor group on the cell performance. Journal of Power Sources, 243: 253-259.

2.       Chang, J., Lee, C., Kumar, D., Chen, P., Lin, L., Thomas, K. R. J. and Ho, K. (2013). Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel. Journal of Power Sources, 240: 779-785.

3.       Namuangruk, S., Fukuda, R., Ehara, M., Meeprasert, J., Khanasa, T., Morada, S., Kaewin, T., Jungsuttiwong, S., Sudyoadsuk, T. and Promarak, V. (2012). D–D− π–A-Type organic dyes for dye-sensitized solar cells with a potential for direct electron injection and a high extinction coefficient: synthesis, characterization, and theoretical investigation. The Journal of Physical Chemistry C, 116(49): 25653-25663.

4.       Pei, K., Wu, Y., Islam, A., Zhu, S., Han, L., Geng, Z. and Zhu, W. (2014). Dye-sensitized solar cells based on quinoxaline dyes: effect of  π – linker on absorption, energy levels, and photovoltaic performances, The Journal of Physical Chemistry C, 118(30): 16552-16561.

5.       Hamadanian, M., Jabbari, V. and Gravand, A. (2012). Materials science in semiconductor processing dependence of energy conversion efficiency of dye-sensitized solar cells on the annealing temperature of TiO2 nanoparticles. Materials Science in  Semiconductor Processing, 15(4): 371-379.

6.       Lee, J. P., Yoo, B., Suresh, T., Kang, M. S., Vital, R. and Kim, K. J. (2009). Novel silane-substituted benzimidazolium iodide as gel electrolyte for dye-sensitized solar cells. Electrochimica Acta, 54(18): 4365-4370.

7.       Torchani, A., Saadaoui, S., Gharbi, R. and Fathallah, M. (2015). Sensitized solar cells based on natural dyes. Current Applied Physics, 15(3): 307-312.

8.       Ludin, N. A., Al-Alwani Mahmoud,  A. M., Bakar Mohamad, A., Kadhum, A. A. H., Sopian, K. and Abdul Karim, N. S. (2014). Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 31: 386-396.

9.       Gong, J., Liang, J. and Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848-5860.

10.    Polo, A. S., Itokazu, M. K. and Murakami Iha, N. Y. (2004). Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews, 248(13-14), 1343-1361.

11.    Richhariya, G., Kumar, A., Tekasakul, P. and Gupta, B. (2017). Natural dyes for dye-sensitized solar cell: A review. Renewable and Sustainable Energy Reviews, 69: 705-718.

12.    Hamadanian, M., Safaei-Ghomi, J., Hosseinpour, M., Masoomi, R. and Jabbari, V. (2014). Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Materials Science in Semiconductor Processing, 27: 733-739.

13.    Koyama, Y., Miki, T., Wang, X. F. and Nagae, H. (2009). Dye-sensitized solar cells based on the principles and materials of photosynthesis: Mechanisms of suppression and enhancement of photocurrent and conversion efficiency. International Journal of Molecular Sciences, 10(11): 4575-4622.

14.    Kalyanasundaram, K. and Graetzel, M. (2010). Artificial photosynthesis: Biomimetic approaches to solar energy conversion and storage. Current Opinion in Biotechnology, 21(3): 298-310.

15.    Shahid, M., Shahid-Ul-Islam and Mohammad, F. (2013). Recent advancements in natural dye applications: A review. Journal of Cleaner Production, 53: 310-331.

16.    Hao, S., Wu, J., Huang, Y. and Lin, J. (2006). Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 80(2): 209-216.

17.    Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V. and Spiccia, L. (2001). Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 123(8): 1613-1624.

18.    Nwanya, A. C., Ezema, F. I. and Ejikeme, P. M. (2011). Dyed sensitized solar cells: A technically and economically alternative concept to p-n junction photovoltaic devices. International Journal of the Physical Sciences, 6(22): 5190-5201.

19.    Ahn, J., Lee, K.C., Kim, D., Lee, C., Lee, S., Cho, D.W., Kyung, S. and Im, C. (2013). Synthesis of novel ruthenium dyes with thiophene or thienothiophene substituted terpyridyl ligands and their characterization. Molecular Crystals and Liquid Crystals, 581(1): 45-51.

20.    Zhang, J., Yu, C., Wang, L., Li, Y., Ren, Y. and Shum, K. (2014). Energy barrier at the N719-dye/CsSnI3 interface for photogenerated holes in dye-sensitized solar cells. Scientific Reports, 4: 6954.

21.    Lim, A., Manaf, N., Tennakoon, K., Chandrakanthi, R. L. N., Lim, L. B. L., Bandara, J. M. R. and Ekanayake, P. (2015). Higher performance of DSSC with dyes from Cladophora sp. as mixed co-sensitizer through synergistic effect. Journal of Biophysics: 1-8.

22.    Galoppini, E. (2004). Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 248(13-14): 1283-1297.

23.    Kumara, N. T. R. N., Ekanayake, P., Lim, A., Iskandar, M. and Ming, L. C. (2013). Study of the enhancement of cell performance of dye sensitized solar cells sensitized with Nephelium lappaceum (F: Sapindaceae). Journal of Solar Energy Engineering, 135: 031014.

24.    Leonat, L., Sbârcea, G. and Bran̂zoi, I. V. (2013). Cyclic voltammetry for energy levels estimation of organic materials. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 75: 111-118.

25.    Kumara, N. T. R. N., Ekanayake, P., Lim, A., Liew, L. Y. C., Iskandar, M., Ming, L. C. and Senadeera, G. K. R. (2013). Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. Journal of Alloys and Compounds, 581: 186-191.

26.    Ooyama, Y. and Harima, Y. (2012). Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. ChemPhysChem, 13(18): 4032-4080.




Previous                    Content                    Next