Malaysian Journal of Analytical Sciences Vol 21 No 6
(2017): 1399 - 1408
DOI:
10.17576/mjas-2017-2106-22
NANOEMULSION BASED PALM
OLEIN AS VITAMIN E CARRIER
(Nanoemulsi Berasaskan Olein Sawit Sebagai Pembawa Vitamin E)
Suria Ramli1, 2*, Norhakimah Norhman1,
Norhidayu Zainuddin1, Safiah Mohamad Ja’afar1, Irman
Abdul Rahman3
1School of Chemical Sciences and Food Technology
2Polymer Research Center
3School of Applied Physics
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author:
su_ramli@ukm.edu.my
Received:
28 September 2016; Accepted: 6 March 2017
Abstract
Aging process makes our skin getting thinner and drier. Antioxidant
based on nanoemulsion system is favourable because of its effectiveness. This study
was conducted to develop nanoemulsion system based on palm olein as a carrier
of vitamin E and the physicochemical behaviours of the system were studied.
Palm olein as oil phase, polyoxyethylene (4) lauryl ether (Brij 30) was used as
a surfactant and vitamin E as an anti-aging agent. The mixtures of Brij 30 and
palm olein at certain ratios were thoroughly mixed and titrated with 5 – 95%
wt. of water and homogenized by using homogenizer. The Palm olein/Brij 30/Water
mixtures that produced a clear solution and no birefringence after observation
under polarized light microscopy are labelled as nanoemulsion. Nanoemulsion
region was shown in ternary phase diagram. Based on the ternary diagram, these
systems were formed at oil: surfactant (O/S) ratio 4:6, 5:5 and 6:4 and 20 –
50% wt of water. These systems were then characterized for stability test,
particle size, electrical conductivity, viscosity and pH. Stability test was
done at three temperatures, which were 4, 25 and 40 °C for one month and four
cycles of freeze-thaw at storage temperature for 12 hours at each temperature.
The systems were stable and no phase separation was observed. Particle size
analysis showed that most systems have a particle size within the range of
nanoemulsion (20 – 500 nm). Electrical conductivity tests showed that
water-in-oil system formed at low water percentage (20 – 30% wt. of water) and
bicontinuous at a higher percentage (30 – 50% wt. of water). Viscosity of both
systems vitamin E-loaded and unloaded is very low. All systems have a pH value
in a range of 6 – 7, which are suitable to be applied to human skin. Based on
the physical characteristics of the system, it shows high potential as a
vitamin E carrier.
Keywords: nanoemulsion,
palm olein, vitamin E, ternary phase diagram, anti-aging agent
Abstrak
Proses
penuaan menyebabkan kulit kita menjadi semakin nipis dan kering. Antioksida
yang berasaskan sistem nanoemulsi lebih digemari kerana kesannya yang lebih
berkesan. Penyelidikan ini dijalankan untuk membangunkan sistem berasaskan
olein sawit sebagai pembawa vitamin E dibangunkan dan sifat fizikokimianya
dikaji. Olein sawit sebagai fasa minyak, polioksietilena (4) lauril eter (Brij
30) digunakan sebagai surfaktan dan vitamin E sebagai bahan aktif. Campuran
Brij 30 dan olein sawit dikacau sehingga sebati dan seterusnya dititratkan air
sebanyak 5 – 95% (berat/berat) dan dihomogenkan menggunakan alat penghomogenan.
Campuran Olein Sawit/Brij 30/Air yang menghasilkan larutan jernih dan tiada
dwibiasan dilabelkan sebagai nanoemulsi selepas pemerhatian di bawah mikroskop
cahaya terkutub. Rantau nanoemulsi ditunjukkan di dalam gambar rajah fasa
ternari. Berdasarkan kepada gambar rajah fasa ternari, sistem ini terhasil pada
nisbah minyak:surfaktan (M/S) sebanyak 4:6, 5:5 dan 6:4 dengan peratusan air
sebanyak 20 – 50% (berat/berat). Seterusnya, sistem tersebut dicirikan melalui
ujian kestabilan, saiz partikel, kekonduksian elektrik, kelikatan dan pH. Ujian
kestabilan dilakukan pada setiap suhu berbeza iaitu 4 °C, 25 °C dan 40 °C selama
sebulan dan empat kitaran pemanasan-penyejukan dengan suhu penyimpanan selama
12 jam pada setiap suhu. Sistem-sistem tersebut adalah stabil dan tidak berlaku
perubahan fasa. Ujian pengukuran saiz partikel menunjukkan bahawa kebanyakan
sistem bersaiz di dalam julat saiz nanoemulsi iaitu di antara 20 –500 nm.
Melalui ujian kekonduksian elektrik, dijangkakan sistem air-dalam-minyak pada
20% hingga 30% (berat/berat). Kelikatan nanoemulsi tanpa atau dengan bahan
aktif pula adalah sangat rendah. Semua sistem mempunyai nilai pH yang berada
dalam julat 6 – 7, di mana ianya sesuai diaplikasi pada kulit. Berdasarkan
kepada sifat fizikal sistem, ia sesuai diaplikasikan sebagai pembawa vitamin E.
Kata
kunci: nanoemulsi, olein sawit, vitamin E,
rajah fasa ternari, agen anti-penuaan
References
1. Sadick, N. S., Karcher. C. And Palminsano, L.
(2009). Cosmetic dermatology of the aging face. Clinics in Dermatology, 27(3): 3 – 12.
2. Choi, C. M. and
Berson, D. S. (2006). Cosmeceuticals. Seminar
in Cutaneous Medicine and Surgery, 25: 163 – 168.
3. Teo, B. S. X., Basri, M., Zakaria, M. R. S., Salleh, A.
B., Raja Abdul Rahman, R., N. Z. and
Abdul Rahman, M. B. (2010). A potential tocopherol acetate loaded palm oil
ester-in-water nanoemulsion for nanocosmeceuticals. Journal of Nanobiotechnology, 8(4): 1 – 11.
4. Manela-Azulay, M. and Bagatin, E. (2009).
Cosmeceuticals vitamins. Clinics in
Dermatology, 27(5): 469 – 474.
5. McCelements, D. J. and Rao, J. (2011).
Food-grade nanoemulsions: formulation, fabrication, properties, performance,
biological fate and potential toxicity. Critical
Review in Food Science and Nutrition, 51(4): 285 – 330.
6. Mishra, R. K.,
Soni, G. C. and Mishra, R. (2014). Nanoemulsion: a novel drug delivery tool. International Journal of Pharma Research
& Review, 3(7): 32 – 43.
7. Rachmawati, H.,
Budiputra, D. K., Suhandono, S. and Anggadiredja, K. (2014). Curcumin
nanoemulsion for transdermal application: Formulation and evaluation. Research and Development on Nanotechnology
in Indonesia, 1(1): 5 – 8.
8. Uso’n, N., Garcia, M. J. and Solan, C. (2004). Formation of
water-in-oil (w/o) nanoemulsions in a water/mixed non-ionic surfactant/oil
system prepared by a low energy emulsification method. Colloid and Surfaces A: Physicochemical Engineering Aspects, 250:
415 – 421.
9. Solè, I., Maestro, A., Pey, C. M., Gonzales, C. Solans,
C. and Gutierrez, J. M. (2006). Nanoemulsion preparation by low
energy methods in an ionic surfactant system. Colloids and Surfaces A: Physicochemical Engineering Aspects, 288:
138 – 143.
10. Yukuyama, M. N., Ghilsleni, D. D. M., Pinto, T. J. A. and
Bou-Chacra, N. A. (2016).
Nanoemulsion: Process selection and application in cosmetics - A review. International Journal of Cosmetic Science,
38(1): 13 – 24.
11. Solans, C., Izquerdo, P., Nolla, J., Azemar,
N. and Garcia-Celma, M. J. (2005). Nanoemulsion. Current Opinion in Colloid & Interface Science, 10: 102 – 110.
12. Gutierrez, J. M., Gonzales, C., Maestro, A., Sole, I.,
Pey, C. M. and Nolla. J. (2008). Nanoemulsion: New application and optimization of their
preparation. Current Opinion in Colloid
& Interface Science, 13: 245 – 251.
13. Tadros, T. F.
(2005). Applied surfactants: Principles and application. Winheim: WILEY-VCH.
14. Bouchemal, K.
S., Brianco, E. and Perrier, H. F. (2004). Nanoemulsion formulation using
spontaneous emulsification: Solvent, oil and surfactant optimization. International Journal of Pharmaceutics,
280(1-2): 241 – 251.
15. Tadros, T., Izqueirdo, P., Esquena, J. and Solans, C.
(2004). Formation
and stability of nanoemulsions. Advance
in Colloid and Interface Science, 108-109: 303 – 318.
16. Sonnevile, A. O., Simmonet, J. T. and
Alloret, F. L. (2004). Nanoemulsion: A new vehicle for skin products. Advances in Colloid and Interface Science
108-09: 145 – 149.
17. Masaki, H. (2010). Role of antioxidants in
the skin: anti-aging effects. Journal of
Dermatological Science 58(2): 85 – 90.
18. Gawrysiak-Witulska,
M., Siger, A. and Nogal-Kalucka, M. (2009). Degradation of tocopherols during
near-ambient rapeseed drying. Journal of
Food Lipids, 16(4): 524 – 539.
19. Lesmes, U. and
McClements, D. J. (2009). Structure-function relationships to guide rational
design and fabrication of particulate food delivery systems. Trends in Food Science & Technology,
20(10): 448 –457.
20. McClements, D.
J., Decker, E. A., Park, Y. and Weiss, J. (2009). Structural design principles
for delivery of bioactive components in nutraceuticals and functional foods. Criticals Reviews in Food Science and
Nutrition, 49(6): 577 – 606.
21. Yang, Y. and
McClements, D. J. (2013). Vitamin E bioaccessibility: Influence of carrier oil
type on digestion and release of emulsified α-tocopherol acetate. Food Chemistry, 141: 473 – 481.
22. Alzorqi, I., Ketabchi, M. R., Sudheer, S. and
Manickam, S. (2016). Optimization of ultrasound induced emulsification on the
formulations of palm-olein based nanoemulsion for the incorporation of
antioxidant β-D-glucan polysaccharides. Ultrasonics
Sonochemistry, 31: 71 – 84.
23. Burton, G. W. and Traber, M. G. (1990).
Vitamin E: Antioxidant activity biokenetics and bioavailability. Annual Review of Nutrition, 10(1): 357 –
382.
24. Gunstone, F. D.
(2004). The chemistry of oils and fats: Sources, composition, properties and
uses. Blackwell Publisher, USA.
25. Goh, S. H.,
Choo, Y. M. and Ong, S. H. (1985). Minor carotenoids of palm oil. Journal of the American Oil Chemists’
Society, 62: 237 – 240.
26. Sundram, K. and
Top, A. G. M. (1994). Vitamin E from palm oil. Its extraction and nutritional
properties. Palmas, 15(1): 77 – 82.
27. Kamat, J. P. and Devasagayam, T. P. A.
(1995). Tocotrienols from palm oil as potent inhibitors of lipid peroxidation
and protein oxidation in rat brain mitochondria. Neuroscience Letters, 195(3): 179 – 182.
28. Krinsky, N. I.
(1992). Mechanism of action of biological antioxidants. Proceedings of the Society for Experimental Biology and Medicine,
200(2): 248 – 254.
29. Manorama, R., Chinnasamy, N. and Rukmini, C. (1993). Effect of red
palm oil on some hepatic drug-metabolizing enzymes in rats. Food and Chemical Toxicology, 31(8): 583
– 588.
30. Nesaretnam, K.,
Devasagayam, T. P., Singh, B. B. and Basiron, Y. (1993). The influence of palm
oil or its tocotrienol-rich fraction on the lipid peroxidation potential of rat
liver mitochondria and microsomes. Biochemistry
and Molecular Biology International, 30(1): 159 – 167.
31. Helub, B. J.,
Sicilia, I. and Mahadevappa, V. G. (1989). Effect of tocotrienol derivatives on
collagen and ADP-induced plasma platelet aggregation. Abstracts 1989. PORIM International Palm Oil Development
Conference, September 5 – 9, Kuala Lumpur, Malaysia.
32. Qureshi, A. A.,
Qureshi, N., Wright, J. J. K., Shens, S., Kromer, G., Gapor, A., Chong, Y. H.,
Dewitt, G., Ong, A. S. H., Peterson, D. and Bradlow, B. A. (1991). Lowering of
serum cholesterol in hypercholesterolemic humans by tocotrienols (palm vitee). The American Journal of Clinical Nutrition, 53:
1021 – 1026.
33. Suria, R., Benjamin, P. R. and Gentle, R. G. I. (2009). Formulation and
physical characterization of microemulsions containing isotretinoin. International
Conference on Biomedical and Pharmaceutical Engineering: pp. 1 – 7.
34. Ramli, S., Ja’afar S. M.,
Sisak, M. A. A., Zainuddin, N. And Rahman, I. A. (2015). Formulation and physical characterization of microemulsion
based carboxymethyl cellulose as vitamin C carrier. Malaysian Journal of
Analytical Sciences, 19(1): 275 – 283.
35. Ankith, K. R., Subhashis, D. and Niranjan, M.
B. (2013). Nanoemulsion a novel approach for lipophilic drugs- a review. Asian Journal of Pharmaceutical Research, 3(2):
84 – 92.
36. Subhashis, D., Satayanarayana and Gampa, V.
K. (2011). Nanoemulsion – a method to improve the solubility of lipophilic
drugs. An International Journal of
Advances in Pharmaceutical Sciences, 2(2-5): 72 – 83.
37. Chen, C. M. and
Warr, G. G. (1992). Rheology of ternary microemulsion. Journal
of Physical Chemistry, 96: 9492 – 9497.
38. Bagwe, R. P., Kanicky, B. J., Palla, P. K., Patanjail and Shah, D.
(2011). Improved drug delivery using
microemulsion: Rationale, recent progress and news horizons. Critical Review in Therapeutic Drug Carrier
Systems, 18: 77 – 140.
39. Kamila, M. M., Mondal, N., Gupta, B. K. and Ghosh, L. K. (2009).
Preparation, characterization and in-vitro evaluation of sunflower oil-tween
80-glycerol-based microemulsion formulation of BCS Class-II drug. Latin American Journal of Pharmacy,
28(4): 622 – 627.
40. Herrera, J. R., Peralta, R. D., Lopez, R. G., Cesteros,
L. C., Mendizabal, E. and Puig, J. E. (2003). Cosurfactant effects on the
polymerization of vinyl acetate in anionic microemulsion media. Polymer 44(6): 1795 – 1802.
41. Junyaprasert, V. B., Boonme, P.,
Songkro, S., Krauel, K. and Rades, T. (2007). Transdermal
delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o
Brij-97-based microemulsion. Journal of
Pharmacy and Pharmaceutical Sciences, 10(3): 288 – 298.
42. Garti, N. and
Aserin, A. (2006). Microemulsions for solubilization and delivery of
nutraceuticals and drugs, in microcapsulation: Methods and industrial
applications, Benita, S. (Editor). Taylor & Francis Group: New York: pp.
345 – 428.
43. Sripriya, R., Muthu Raja. K., Santhosh,
G., Chandrasekaran, M. and Noel, M. (2007). The effect of structure
of oil phase, surfactant and co-surfactant on the physicochemicals and
electrochemical properties of bicontinuous microemulsion. Journal of Colloid and Interface Science, 314: 712 – 717.
44. Kogan, A., Aserin, A. and Garti, N. (2007). Improved solubilization of
carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase
dilution. Journal of Colloid and
Interface Science, 315(2): 637 – 647.
45. Bennet, K. E., Hatfield, J. C., Davis, H. T., Macosko, C. W. and Seriven,
L. E. (1982). Microemulsion, Robb, I. D. (Editor). Plenum Press, New York.
46. Djodrjevic, L.,
Primorac, M., Stupar, M. and Krajisnik, D.
(2004). Characterization of caprycaproyl macrogolglycerides based
microemulsion drug delivery vehicles for an amphiphilic drug. International
Journal of Pharmacy, 271: 11 – 19.
47. Moulik, S. P. and Ray, S. (1994).
Thermodynamics of clustering of droplets in water/AOT/heptanes
microemulsion. Pure Application of
Chemistry, 66: 521 – 525.
48. Suria, R. (2013). Surfactant protein B-based microemulsion as transdermal
carrier for anti-acne agent. Ph.D thesis. The University of Queensland.
49. Austin, C. E.
(2000). Drug delivery system. Patents WO2000064528 A1.
50. Peltola, S., Saarinen-Savolainen, P., Kiesvaara, J.,
Suhonen, T. M. and Urti, A. (2003). Microemulsions for topical delivery of
estradiol. International Journal of Pharmaceutics, 254(2): 99 – 107.
51. Sinja, M., Jochen, W. and McClements, D. J.
(2013). Vitamin E-enrinched nanoemulsions formed by emulsion phase
inversion: factors influencing
droplet size and
stability. Journal of Colloid and Interface Science, 402: 122 – 130.