Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1352 - 1365

DOI: 10.17576/mjas-2017-2106-17

 

 

 

EFFECT OF BUFFER COMPOSITION ON THE ANALYSIS OF LIPOPOLYSACCHARIDES FROM Escherichia coli 055:B5 AND UT189 BY CAPILLARY ELECTROPHORESIS WITH DIRECT UV DETECTION

 

(Kesan Komposisi Penimbal ke atas Analisis Lipopolisakarida dari Escherichia coli 055:B5 dan UT189 oleh Elektroforesis Kapilari dengan Pengesan UV)

 

Fun Man Fung1, Min Su1, Sam Fong Yau Li1,2*

 

1Department of Chemistry,

National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

2Singapore-Peking-Oxford Research Enterprise (SPORE) Programme,

NUS Environmental Research Institute (NERI) #02-01, T-Lab Building (TL), 5a Engineering Drive1 1, Singapore 117411, Singapore

 

*Corresponding author:  chmlifys@nus.edu.sg

 

 

Received: 7 November 2016; Accepted: 18 September 2017

 

 

Abstract

Endotoxins are known to many as bacterial toxins. Conventional analysis of endotoxins by capillary electrophoresis-mass spectrometry is laborious and time consuming. A faster capillary electrophoresis method using direct ultraviolet (UV) detection was performed to analyze endotoxins isolated from Escherichia coli (E. coli) 055:B5 and UT189. In this study, we compared different running buffers and buffer additives to examine the effects of each on the electropherograms obtained. The optimum buffer system was then used to analyze of lipopolysaccharides (LPS) signals from the bacteria E. coli 055:B5 (source strain CDC 1644-70), E. coli K-235 (source strain ATCC 13027) and Klebsiella pneumoniae (source strain ATCC 15380). The data generated for each variant peak showed very good precision and high reproducibility for migration time with percentage RSD values of ≤1.2% (n = 3). Similarly, the percentage RSD for peak areas were ≤5.3% (n = 3) across the three LPS.

 

Keywords:  capillary electrophoresis, direct UV, endotoxin, lipopolysaccharides, buffer

 

Abstrak

Endotoksin diketahui sebagai bakteria yang berbahaya. Kaedah konvensional bagi endotoksin oleh elektroforesis kapilari-jisim spektrometri adalah bersifat rumit dan memerlukan tempoh masa yang panjang. Kaedah elektroforesis kapilari yang pantas menggunakan pengesan ultralembayung telah dijalankan untuk menganalisa endotoksin yang dipisahkan dari Escherichia coli (E. coli) 055:B5 and UT189. Dalam kajian ini, larutan penimbal yang berbeza telah diuji dan penambahan penimbal dilakukan untuk mengkaji kesan bagi setiap elektropherogram yang terhasil. Sistem penimbal yang optimum kemudian digunakan untuk menganalisa respon lipopolisakarida (LPS) dari bakteria E. coli 055:B5 (sumber strain CDC 1644-70), E. coli K-235 (sumber strain ATCC 13027) and Klebsiella pneumoniae (sumber strain ATCC 15380). Data yang terhasil bagi puncak setiap varian menunjukkan ia adalah jitu dan kebolehulangan yang tinggi bagi masa pemindahan dengan nilai peratus RSD ialah ≤1.2% (n = 3). Begitu juga, peratus RSD bagi luas – luas puncak ketiga – tiga LPS ialah ≤5.3% (n = 3).

 

Kata kunci:  elektroforesis kapilari, UV langsung, endotoksin, lipopolisakarida, penimbal

 

References

1.       Ramachandran, G. (2014). Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence, 5(1): 213 – 218.

2.       Laitinen, S., Kangas, J., Kotimaa, M., Liesivuori, J., Martikainen, P. J., Nevalainen, A., Sarantila, R. and Husman, K. (1994). Workers' exposure to airborne bacteria and endotoxins at industrial wastewater treatment plants. American Industrial Hygiene Association, 55(11): 1055 – 1060.

3.       Jorgensen, J. H., Lee, J. C. and Pahren, H. R. (1976). Rapid detection of bacterial endotoxins in drinking water and renovated wastewater. Applied and Environmental Microbiology, 32(3): 347 – 351.

4.       Kastowsky, M., Gutberlet, T. and Bradaczek, H. (1992). Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide. Journal of Bacteriology, 174(14): 4798 – 4806.

5.       Silhavy, T. J., Kahne, D. and Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5): 1 – 16.

6.       Kilár, A., Dörnyei, Á. and Kocsis, B. (2013). Structural characterization of bacterial lipopolysaccharides with mass spectrometry and onand offline separation techniques. Mass Spectrometry Reviews, 32(2): 90 – 117.

7.       Lamari, F. N., Gioldassi, X. M., Mitropoulou, T. N. and Karamanos, N. K. (2002). Structure analysis of lipoglycans and lipoglycanderived carbohydrates by capillary electrophoresis and mass spectrometry. Biomedical Chromatography, 16(2): 116 – 126.

8.       Volpi, N., Maccari, F. and Linhardt, R. J. (2008). Capillary electrophoresis of complex natural polysaccharides. Electrophoresis, 29(15): 3095 – 3106.

9.       Restaino, O. F., Cimini, D., De Rosa, M., De Castro, C., Parrilli, M. and Schiraldi, C. (2009). Highperformance CE of Escherichia coli K4 cell surface polysaccharides. Electrophoresis, 30(22): 3877 – 3883.

10.    Volpi, N. (2003). Separation of Escherichia coli 055: B5 lipopolysaccharide and detoxified lipopolysaccharide by highperformance capillary electrophoresis. Electrophoresis, 24(17): 3097 – 3103.

11.    Eugene, C. Y. and Hackett, M. (2000). Rapid isolation method for lipopolysaccharide and lipid A from gram-negative bacteria. Analyst, 125(4): 651 – 656.

12.    Lan, M., Wu, J., Liu, W., Zhang, W., Ge, J., Zhang, H., Sun, J., Zhao, W. and Wang, P. (2012). Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. Journal of the American Chemical Society, 134(15): 6685 – 6694.

13.    Wu, S. F., Chiu, T. C., Ho, W. L. and Chang, H. T. (2009). Combining capillary electrophoresis with laserinduced fluorescence detection for the analysis of Escherichia coli lysates. Electrophoresis, 30(13): 2397 – 2402.

14.    Wenz, C., MarchettiDeschmann, M., Herwig, E., Schröttner, E., Allmaier, G., Trojer, L., Vollmer, M. and Rüfer, A. (2010). A fluorescent derivatization method of proteins for the detection of lowlevel impurities by microchip capillary gel electrophoresis. Electrophoresis, 31(4): 611 – 617.

15.    Volpi, N. (2004). Separation of capsular polysaccharide K4 and defructosylated K4 by highperformance capillary electrophoresis. Electrophoresis, 25(45): 692 – 696.

16.    Knudsen, C. B. and Beattie, J. H. (1997). On-line solid-phase extraction–capillary electrophoresis for enhanced detection sensitivity and selectivity: application to the analysis of metallothionein isoforms in sheep fetal liver. Journal of Chromatography A, 792(1): 463 – 473.

17.    Westphal, O. and Lüderitz, O. (1954). Chemische erforschung von lipopolysacchariden gramnegativer bakterien. Angewandte Chemie, 66(1314): 407 – 417.

18.    Yu, L., Yuan, L., Feng, H. and Li, S. F. Y. (2004). Determination of the bacterial pathogen Edwardsiella tarda in fish species by capillary electrophoresis with blue lightemitting diodeinduced fluorescence. Electrophoresis, 25(1819): 3139 – 3144.

19.    Venter, P. and Lues, J. F. R. (2003). Extraction methods for lipopolysaccharides from Escherichia coli ATCC 25922 for quantitative analysis by capillary electrophoresis. International Journal of Food Microbiology, 84(2): 245 – 250.

20.    Giordano, B. C., Muza, M., Trout, A. and Landers, J. P. (2000). Dynamically-coated capillaries allow for capillary electrophoretic resolution of transferrin sialoforms via direct analysis of human serum. Journal of Chromatography B: Biomedical Sciences and Applications, 742(1): 79 – 89.

 




Previous                    Content                    Next