Malaysian Journal of Analytical Sciences Vol 21 No 6
(2017): 1352 - 1365
DOI:
10.17576/mjas-2017-2106-17
EFFECT OF
BUFFER COMPOSITION ON THE ANALYSIS OF LIPOPOLYSACCHARIDES FROM Escherichia coli
055:B5 AND UT189 BY CAPILLARY ELECTROPHORESIS WITH DIRECT UV DETECTION
(Kesan Komposisi Penimbal ke atas
Analisis Lipopolisakarida dari Escherichia
coli 055:B5 dan UT189 oleh Elektroforesis Kapilari dengan Pengesan UV)
Fun Man Fung1, Min Su1, Sam Fong Yau Li1,2*
1Department
of Chemistry,
National University of Singapore, 3 Science Drive 3,
Singapore 117543, Singapore
2Singapore-Peking-Oxford Research Enterprise (SPORE)
Programme,
NUS
Environmental Research Institute (NERI) #02-01, T-Lab Building (TL), 5a
Engineering Drive1 1, Singapore 117411, Singapore
*Corresponding author: chmlifys@nus.edu.sg
Received: 7
November 2016; Accepted: 18 September 2017
Abstract
Endotoxins are known to many as
bacterial toxins. Conventional analysis
of endotoxins by capillary electrophoresis-mass spectrometry is laborious and
time consuming. A faster capillary electrophoresis method using direct
ultraviolet (UV) detection was performed to analyze endotoxins isolated from Escherichia coli (E. coli) 055:B5 and UT189. In this study, we compared different
running buffers and buffer additives to examine the effects of each on the
electropherograms obtained. The optimum buffer system was then used to analyze
of lipopolysaccharides (LPS) signals from the bacteria E. coli 055:B5 (source strain CDC 1644-70), E. coli K-235 (source strain ATCC 13027) and Klebsiella pneumoniae (source strain ATCC 15380). The data
generated for each variant peak showed very good precision and high
reproducibility for migration time with percentage RSD values of ≤1.2% (n = 3).
Similarly, the percentage RSD for peak areas were ≤5.3% (n = 3) across the
three LPS.
Keywords:
capillary electrophoresis, direct UV, endotoxin, lipopolysaccharides,
buffer
Abstrak
Endotoksin diketahui sebagai
bakteria yang berbahaya. Kaedah konvensional bagi endotoksin oleh
elektroforesis kapilari-jisim spektrometri adalah bersifat rumit dan memerlukan
tempoh masa yang panjang. Kaedah elektroforesis kapilari yang pantas menggunakan
pengesan ultralembayung telah dijalankan untuk menganalisa endotoksin yang
dipisahkan dari Escherichia coli (E.
coli) 055:B5 and UT189. Dalam kajian ini, larutan penimbal yang berbeza telah
diuji dan penambahan penimbal dilakukan untuk mengkaji kesan bagi setiap
elektropherogram yang terhasil. Sistem penimbal yang optimum kemudian digunakan
untuk menganalisa respon lipopolisakarida (LPS) dari bakteria E. coli 055:B5 (sumber strain CDC
1644-70), E. coli K-235 (sumber
strain ATCC 13027) and Klebsiella pneumoniae
(sumber strain ATCC 15380). Data yang terhasil bagi puncak setiap varian
menunjukkan ia adalah jitu dan kebolehulangan yang tinggi bagi masa pemindahan
dengan nilai peratus RSD ialah ≤1.2% (n = 3). Begitu juga, peratus RSD bagi
luas – luas puncak ketiga – tiga LPS ialah ≤5.3% (n = 3).
Kata kunci: elektroforesis
kapilari, UV langsung, endotoksin, lipopolisakarida, penimbal
References
1.
Ramachandran,
G. (2014). Gram-positive and gram-negative bacterial toxins in sepsis: A brief
review. Virulence, 5(1): 213 – 218.
2.
Laitinen,
S., Kangas, J., Kotimaa, M., Liesivuori, J., Martikainen, P. J., Nevalainen,
A., Sarantila, R. and Husman, K. (1994). Workers' exposure to airborne bacteria
and endotoxins at industrial wastewater treatment plants. American Industrial Hygiene Association, 55(11): 1055 – 1060.
3.
Jorgensen,
J. H., Lee, J. C. and Pahren, H. R. (1976). Rapid detection of bacterial
endotoxins in drinking water and renovated wastewater. Applied and Environmental Microbiology, 32(3): 347 – 351.
4.
Kastowsky,
M., Gutberlet, T. and Bradaczek, H. (1992). Molecular modelling of the
three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide.
Journal of Bacteriology, 174(14):
4798 – 4806.
5.
Silhavy,
T. J., Kahne, D. and Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology,
2(5): 1 – 16.
6.
Kilár,
A., Dörnyei, Á. and Kocsis, B. (2013). Structural characterization of bacterial
lipopolysaccharides with mass spectrometry and on‐and off‐line
separation techniques. Mass Spectrometry
Reviews, 32(2): 90 – 117.
7.
Lamari,
F. N., Gioldassi, X. M., Mitropoulou, T. N. and Karamanos, N. K. (2002).
Structure analysis of lipoglycans and lipoglycan‐derived
carbohydrates by capillary electrophoresis and mass spectrometry. Biomedical Chromatography, 16(2): 116 –
126.
8.
Volpi,
N., Maccari, F. and Linhardt, R. J. (2008). Capillary electrophoresis of
complex natural polysaccharides. Electrophoresis,
29(15): 3095 – 3106.
9.
Restaino, O. F.,
Cimini, D., De Rosa, M., De Castro, C., Parrilli, M. and Schiraldi, C. (2009). High‐performance
CE of Escherichia coli K4 cell
surface polysaccharides. Electrophoresis,
30(22): 3877 – 3883.
10.
Volpi,
N. (2003). Separation of Escherichia coli
055: B5 lipopolysaccharide and detoxified lipopolysaccharide by high‐performance
capillary electrophoresis. Electrophoresis,
24(17): 3097 – 3103.
11.
Eugene,
C. Y. and Hackett, M. (2000). Rapid isolation method for lipopolysaccharide and
lipid A from gram-negative bacteria. Analyst,
125(4): 651 – 656.
12.
Lan,
M., Wu, J., Liu, W., Zhang, W., Ge, J., Zhang, H., Sun, J., Zhao, W. and Wang,
P. (2012). Copolythiophene-derived colorimetric and fluorometric sensor for
visually supersensitive determination of lipopolysaccharide. Journal of the American Chemical Society,
134(15): 6685 – 6694.
13.
Wu,
S. F., Chiu, T. C., Ho, W. L. and Chang, H. T. (2009). Combining capillary
electrophoresis with laser‐induced
fluorescence detection for the analysis of Escherichia coli lysates. Electrophoresis, 30(13): 2397 – 2402.
14.
Wenz,
C., Marchetti‐Deschmann, M., Herwig, E., Schröttner,
E., Allmaier, G., Trojer, L., Vollmer, M. and Rüfer, A. (2010). A fluorescent
derivatization method of proteins for the detection of low‐level
impurities by microchip capillary gel electrophoresis. Electrophoresis, 31(4): 611 – 617.
15.
Volpi,
N. (2004). Separation of capsular polysaccharide K4 and defructosylated K4 by
high‐performance capillary electrophoresis. Electrophoresis, 25(4‐5):
692 – 696.
16.
Knudsen,
C. B. and Beattie, J. H. (1997). On-line solid-phase extraction–capillary
electrophoresis for enhanced detection sensitivity and selectivity: application
to the analysis of metallothionein isoforms in sheep fetal liver. Journal of Chromatography A, 792(1): 463
– 473.
17.
Westphal,
O. and Lüderitz, O. (1954). Chemische erforschung von lipopolysacchariden
gramnegativer bakterien. Angewandte
Chemie, 66(13‐14): 407 – 417.
18.
Yu,
L., Yuan, L., Feng, H. and Li, S. F. Y. (2004). Determination of the bacterial
pathogen Edwardsiella tarda in fish
species by capillary electrophoresis with blue light‐emitting
diode‐induced fluorescence. Electrophoresis, 25(18‐19):
3139 – 3144.
19.
Venter,
P. and Lues, J. F. R. (2003). Extraction methods for lipopolysaccharides from Escherichia coli ATCC 25922 for
quantitative analysis by capillary electrophoresis. International Journal of Food Microbiology, 84(2): 245 – 250.
20.
Giordano,
B. C., Muza, M., Trout, A. and Landers, J. P. (2000). Dynamically-coated
capillaries allow for capillary electrophoretic resolution of transferrin
sialoforms via direct analysis of human serum. Journal of Chromatography B: Biomedical Sciences and Applications,
742(1): 79 – 89.