Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1028 - 1035

DOI: https://doi.org/10.17576/mjas-2017-2105-04

 

 

 

ANTI-PROLIFERATIVE EFFECT OF Aerva javanica EXTRACTS ON MCF7 AND MDA-MB-231 BREAST CANCER CELL LINES

 

(Kesan Anti-proliferatif Ekstrak Aerva Javanica Ke Atas Titisan Sel Kanser Payudara MCF7 dan MDA-MB-231)

 

Nagla Mustafa Eltayeb1, 2, Ghada Mustafa Eltayeb3, Salizawati Muhamad Salhimi1*

 

1School of Pharmaceutical Sciences,

Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

2Tropical Medicine Research Institute (TMRI),

 National Centre for Research (NCR), Khartoum, Sudan

 3Faculty of Clinical and Industrial Pharmacy,

National University-Sudan, Khartoum 11111, Sudan

 

*Corresponding author:  saliza@usm.my

 

 

Received: 16 August 2016; Accepted: 25 July 2017

 

 

Abstract

In this study, the medicinal plant Aerva javanica was sequentially extracted with n-hexane, chloroform and 80% methanol using maceration technique. The anti-proliferative effect of the three extracts was assessed on two different breast cancer cell lines, MDA-MB-231 and MCF7, using MTT assay. 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity assay was used to assess the antioxidant activity of the three extracts. The result showed that the chloroform extract exerted an inhibitory effect in a concentration dependent manner on both cancer cell lines with IC50 values of 32.7 ± 0.7 µg/ml and 40.9 ± 2 µg/ml on MDA-MD-321 and MCF7 respectively. 80% methanol extract exhibited cytotoxic effect on MCF7 with IC50 value of 96.6 ± 2.9 µg/ml, whereas had no cytotoxic effect on MDA-MB-231 cell line (IC50 ˃ 200 µg/ml). n-hexane extract found to be less cytotoxic against both cancer cell lines with IC50 values of 178.3 ± 3.7 and 196.9 ± 2.8 µg/ml on MDA-MB-231 and MCF7, respectively. The highest IC50 value for scavenging activity was shown by 80% methanol extract (46.5 ± 2.2 µg/ml) followed by chloroform extract (78.3 ± 3.6 µg/ml). On the other hand, the extract prepared in n-hexane showed no scavenging activity effect (IC50 ˃ 1000 µg/ml). Aerva javanica possesses moderate anti-proliferative activity against human breast cancer cell lines with some cytoselectivity towards MDA-MB-231 compare to MCF7 cells. Further studies are needed to identify the potential anticancer component (s) from Aerva javanica.

 

Keywords:  MTT assay, Aerva javanica, MCF7, MDA-MB-231

 

Abstrak

Dalam kajian ini, tumbuhan ubatan Aerva javanica telah diekstrak secara berturutan dengan n-heksana, kloroform dan 80% metanol menggunakan teknik pemaseratan. Kesan anti-proliferatif daripada tiga ekstrak dinilai pada dua titisan sel kanser payudara yang berbeza iaitu MDA-MB-231 dan MCF7, menggunakan ujian MTT. Ujian aktiviti hapus sisa DPPH telah digunakan untuk menilai aktiviti antioksidan daripada tiga ekstrak. Keputusan menunjukkan bahawa ekstrak kloroform memberikan kesan perencatan bergantung kepekatan ke atas kedua-dua jenis sel kanser dengan nilai-nilai IC50 32.7 ± 0.7 μg/ml dan 40.9 ± 2 μg/ml pada MDA-MD-321 dan MCF7 masing-masing. Ekstrak 80% metanol menunjukkan kesan sitotoksik ke atas MCF7 dengan nilai IC50 96.6 ± 2.9 μg/ml, tetapi tidak memberikan kesan sitotoksik ke atas MDA-MB-231 (IC50  ˃ 200 μg/ml). Ekstrak n-heksana didapati kurang sitotoksik terhadap kedua-dua titisan sel kanser dengan nilai-nilai IC50 178.3 ± 3.7 dan 196.9 ± 2.8 µg/ml masing-masing ke atas MDA-MB-231 dan MCF7. Aktiviti hapus sisa yang tertinggi ditunjukkan oleh  ekstrak 80% metanol (IC50 46.5 ± 2.2 μg/ml ) diikuti dengan ekstrak kloroform (IC50 78.3 ± 3.6 μg/ml). Berbeza dengan ekstrak n-heksana yang tidak menunjukkan kesan aktiviti hapus sisa (IC50 ˃ 1000 μg/ml). Aerva javanica mempunyai aktiviti anti-proliferatif sederhana terhadap titisan sel kanser payudara manusia dan lebih selektif terhadap sel-sel MDA-MB-231 berbanding MCF7. Kajian lanjut diperlukan untuk nengenalpasti komponen yang berpotensi sebagai anti-kanser daripada Aerva javanica.

 

Kata kunci:  Ujian MTT, Aerva javanica, MCF7, MDA-MB-23

 

References

1.       Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., LortetTieulent, J. and Jemal, A. (2015). Global cancer statistics, 2012. CA: A cancer journal for clinicians, 65(2): 87 – 108.

2.       Khan, M. K., Ansari, I. A. and Khan, M. S. (2013). Dietary phytochemicals as potent chemotherapeutic agents against breast cancer: Inhibition of NF-κB pathway via molecular interactions in rel homology domain of its precursor protein p105. Pharmacognosy Magazine, 9 (33): 51 – 57.

3.       Cragg, G. M. and Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100(1): 72 – 79.

4.       Khan, M. A., Khan, M. A., Hussain, M. and Mujtaba, G. (2012). Medicinal plants used in folk recipes by the inhabitants of Himalayan region Poonch Valley Azad Kashmir (Pakistan). Journal of Basic and Applied Sciences, 8: 35 – 45.

5.       Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F. and Donoghue, M. J. (1999). Plant systematics: A phylogenetic approach. Ecologia Mediterranea, 25(2): 215.

6.       Elsaeed, A., Mohamed, O. S. A. and Ahmed, R., H. (2015). Anti-Inflammatory effects of Aerva Javanica (Burm.f.) Schult. against carrageenan induced paw oedema in albino rats. Journal of forest products & Industries, 4(1): 17 – 20.

7.       Radwan, H. M, Nazif, N. M. and Hamdy, A. A. (1999). The lipid and flavonoidal constituents of Aerva javanica (var.bovi) Webb in Hook. F and their antimicrobial activity. Egyptian Journal of Pharmaceutical Sciences, 40: 167 – 178.

8.       Abbas, N. O., Ahmed El Imam, Y. M. and Abdelmageed, M. A. M. (2014). The Phytochemical analysis of the ethanolic extract of Sudanese Aerva javanica (Burm.f.) juss. World Journal of Pharmaceutical Research, 4 (6): 2253 – 2263.

9.       Chawla, P., Chawla, A. M. I. T., Vasudeva, N. E. E. R. U. and Sharma, S. K. (2012). A review of chemistry and biological activities of the genus Aerva–a desert plant. Acta Poloniae Pharmaceutica, 69: 171 – 177.

10.    Sepehr, M. F., Jameie, S. B. and Hajijafari, B. (2011). The Cuscuta kotschyana effects on breast cancer cells line MCF7. Journal of Medicinal Plants Research, 5 (27): 6344 – 6351.

11.    Chen, A. Y. and Chen, Y. C. (2013). A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry, 138(4): 2099 – 2107.

12.    Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition: An International Review Journal, 4(3): 384 – 392.

13.    Kim, S. H. and Choi, K. C. (2013). Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicological Research, 29(4): 229 – 234.

14.    Dimas, K., Demetzos, C., Mitaku, S., Marselos, M., Tzavaras, T. and Kokkinopoulos, D. (2000). Cytotoxic activity of kaempferol glycosides against human leukaemic cell lines in vitro. Pharmacological Research, 41(1): 83 – 86.

15.    Kang, G. Y., Lee, E. R., Kim, J. H., Jung, J. W., Lim, J., Kim, S. K. and Kim, K. P. (2009). Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. European Journal of Pharmacology, 611(1): 17 – 21.

16.    Kim, B. W., Lee, E. R., Min, H. M., Jeong, H. S., Ahn, J. Y., Kim, J. H. and Cho, S. G. (2008). Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biology and Therapy, 7(7): 1080 – 1089.

17.    Oh, S. M., Kim, Y. P. and Chung, K. H. (2006). Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Archives of Pharmacal Research, 29(5): 354 – 362.

18.    Tomczyk, M., Drozdowska, D., Bielawska, A., Bielawski, K. and Gudej, J. (2008). Human DNA topoisomerase inhibitors from Potentilla argentea and their cytotoxic effect against MCF-7. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 63(5): 389 – 393.

19.    Mussadiq, S., Riaz, N., Saleem, M., Ashraf, M., Ismail, T. and Jabbar, A. (2013). New acylated flavonoid glycosides from flowers of Aerva javanica. Journal of Asian Natural Products Research, 15 (7): 708 – 716.

20.    Klenkar, J. and Molnar, M. (2015). Natural and synthetic coumarins as potential anticancer agents. Journal of Chemical and Pharmaceutical Research, 7(7): 1223 – 1238.

21.    Jafarian-Dehkordi, A., Emami, S. A., Saeidi, M. and Sadeghi, H. (2004). Cytotoxicologic studies of the extracts of Iranian Juniperus sabina and Platycladus orientalis on Cancer Cells. Journal of Research in Medicinal Sciences, 5: 205 – 209.

22.    Monajemi, R., Oryan, S., Haeri-Roohani, A., Ghannadi, A. and Jafarian, A. (2005). Cytotoxic effects of essential oils of some Iranian Citrus peels. Iran Journal of Pharmaceutical Research, 3:183 – 187.

23.    Jia, T., Zhang, L., Duan, Y., Zhang, M., Wang, G., Zhang, J. and Zhao, Z. (2014). The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway. Cancer cell international, 14 (1): 126 – 140.

24.    Brenton, J. D., Carey, L. A., Ahmed, A. A. and Caldas, C. (2005). Molecular classification and molecular forecasting of breast cancer: ready for clinical application? Journal of Clinical Oncology, 23 (29): 7350 – 7360.

25.    Department of Health and Human Services. National Institutes of Health, National Cancer Institute, USA. (2012). Hormone therapy for breast cancer. https://cancer.gov/types/breast/breast-hormone-therapy-fact-sheet. [Access online on 20 January 2017].

26.    Klinakis, A., Szabolcs, M., Chen, G., Xuan, S., Hibshoosh, H. and Efstratiadis, A. (2009). Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proceedings of the National Academy of Sciences, 106(7): 2359 – 2364.

27.    Munir, H. and Sarfraz, R. A. (2014). Medicinal attributes of Aerva javanica native to pothohar plateau. Pakistan journal of life and social sciences, 12(2): 80 – 86.

28.    Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S. and Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10): 3954 – 3962.

 




Previous                    Content                    Next