Malaysian Journal of Analytical Sciences Vol 21 No
5 (2017): 1162 - 1167
DOI:
https://doi.org/10.17576/mjas-2017-2105-20
IRON(II) COMPLEX OF
ANTHRAQUINONE: SYNTHESIS, STRUCTURAL ELUCIDATION AND ANTIMICROBIAL ACTIVITY
(Komplek Ferum(II) Antrakuinon:
Sintesis, Penentuan Struktur Organik dan Aktiviti Antimikrob)
Nur Dzaina Zaidel,
Vivien Jong Yi Mian*, Mohammad Isa Mohamadin
Faculty of
Applied Sciences
Universiti
Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia
*Corresponding author: vivien@sarawak.uitm.edu.my
Received: 21
August 2016; Accepted: 27 July 2017
Abstract
Our
continuing interest in anthraquinone had led the researchers to look at the
synthesis of metal complex by reacting our major compound, nordamnacanthal with
transition metal, Fe(II). Fe(II)-nordamnacanthal complex had been synthesized successfully
via telescoping synthesis/ one-pot reaction. The ligand and its metal complex
were established by 1D and 2D nuclear magnetic resonance spectroscopy,
UV-Visible, CHNS analyzer, gas chromatography mass spectrometry and infrared
analysis. They were evaluated for their antimicrobial activity using minimum
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).
Fe(II)-nordamnacanthal complex showed stronger inhibition against Pseudomonas aeruginosa at
the concentration of 450 µg/mL while Proteus vulgaris, Klebsiella
pneumoniae and Salmonella pneumoniae at
the concentration of 225 µg/mL compare to nordamnacanthal. In this work, the
synthesized compound, Fe(II)-nordamnacanthal showed better antimicrobial activity
compared to the ligand itself.
Keywords: nordamnacanthal, transition metal Fe(II), Fe(II)-nordamnacanthal
complex, antimicrobial activity
Abstrak
Kesinambungan perhatian kami terhadap antrakuinon telah membawa kami untuk
melihat kepada sintesis kompleks logam dengan menghasilkan tindak balas
sebatian utama kami, nordamnacanthal dengan logam peralihan, Fe(II). Kompleks Fe(II)-nordamnacanthal
telah berjaya disintesiskan melalui teleskop sintesis/tindak balas satu-periuk.
Sebatian dan kompleks logam dikenalpasti melalui 1D dan 2D spektroskopi resonan
magnetik nukleus, UV-Vis, CHNS, kromatografi gas spektometri jisim dan analisis
inframerah. Sebatian dan kompleks logam tersebut telah dinilai untuk aktiviti
antimikrob dengan menggunakan kepekatan perencatan minimum (MIC) dan minimum
kepekatan bakteria (MBC). Kompleks Fe(II)-nordamnacanthal menunjukkan
perencatan yang kuat terhadap Pseudomonas
aeruginosa pada kepekatan 450 µg/mL manakala Proteus vulgaris, Klebsiella pneumoniae dan Salmonella pneumoniae pada kepekatan 225 µg/mL berbanding dengan nordamnacanthal. Dalam kajian ini, sebatian yang
disintesis, kompleks Fe(II)-nordamnacanthal menunjukkan aktiviti antimikrob
lebih baik berbanding dengan sebatian itu sendiri.
Kata kunci: nordamnacanthal,
logam peralihan Fe(II), kompleks Fe(II)-nordamnacanthal, aktiviti antimikrob
References
1.
Jing
J. W., Barbara J. S. and Wei Z. (2011). Cytotoxic effect of xanthones from pericarp of the
tropical fruit
mangosteen (Garcinia mangostana Linn.) on human melanoma
cells. Food and Chemical Toxicology, 49: 2385 – 2391.
2.
Jittra
K., Siriporn S., Pattiyaa L., Pranee R. and Chawanee T. (2013). Xanthone and anthraquinone-type
mycotoxins from the scale insect fungus Aschersonia marginata BCC 28721. Tetrahedron Letters, 54: 3813 – 3815.
3.
Arno R. N. D., Michel F. T., Hippolyte K. W., Gerold J., Guang-Zhi Z.,
Peter W.r, Ning-Hua T. and Pierre T. (2014). Two new anthraquinone dimers from
the stem bark of Pentas schimperi (Rubiaceae) Phytochemistry
Letters, 8: 55 – 58.
4.
West,
B. J., Palmer, S. K., Deng, S. and Palu, A. K. (2012). Antimicrobial activity
of an iridoid rich extract from" morinda citrifolia" fruit. Current
Research Journal of Biological Sciences, 4(1): 52 – 54.
5.
Kamiya,
K., Hamabe, W., Tokuyama, S. and Satake, T. (2009). New anthraquinone
glycosides from the roots of Morinda citrifolia. Fitoterapia, 80(3): 196
– 199.
6.
Mani G., Rangasamy L., Sethu R.,
Anvarbatcha R., Mohamad A. A. and Mallayan P. (2012) Interaction of mixed ligand copper(II)
complexes with CT-DNA and BSA: Effect of primary ligand hydrophobicity on DNA
and protein binding and cleavage and anticancer activities. Polyhedron, 52: 924 – 938.
7.
Li, V.S., Choi, D., Wang, Z., Jimenez, L.S., Tang,
M.S., Kohn, H. (1996) Role of the C-10 Substituent in Mitomycin C-1−DNA
Bonding. Journal of American Chemical Society 118: 2326-2331.
8.
Zin, Z. M., Abdul-Hamid, A. and Osman, A.
(2002). Antioxidative activity of extracts from Mengkudu (Morinda citrifolia
L.) root, fruit and leaf. Food Chemistry, 78(2): 227 – 231.
9.
Güllüce,
M., Sökmen, M., Şahin, F., Sökmen, A., Adigüzel, A. and Özer, H. (2004).
Biological activities of the essential oil and methanolic extract of Micromeria
fruticosa (L) Druce ssp serpyllifolia (Bieb) PH Davis plants from the
eastern Anatolia region of Turkey. Journal of the Science of Food and
Agriculture, 84(7): 735 – 741.
10.
Prista,
L. N., Roque, A. S., Ferreira, M. A. and Alves, A. C. (1965). Chemical study of
Morinda geminate. I. isolation of
morindone, damnacanthal, nor-damnacanthal and rubiadin-1-methyl ether. Garcia de Orta, 13: 19 – 38.
11.
Panhwar,
Q. K. and Memon, S. (2014). Synthesis of Cr(III)-morin complex:
characterization and antioxidant study. The Scientific World Journal,
2014: 1 – 8.
12.
Ran, X. G., Wang, L. Y., Cao, D. R., Lin, Y. C. and
Hao, J. (2011). Synthesis, characterization and in vitro biological
activity of cobalt(II), copper(II) and zinc(II). Schiff base complexes derived
from salicylaldehyde and D, Lselenomethionine. Applied Organometallic Chemistry,
25: 9 –
15.