Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 149 - 158

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-17

 

 

 

IRON AND MANGANESE REMOVAL BY NANOFILTRATION AND ULTRAFILTRATION MEMBRANES: INFLUENCE OF pH ADJUSTMENT

 

(Penyingkiran Besi dan Mangan oleh Membran Penurasan-Nano dan Penurasan-Ultra: Pengaruh Pelarasan pH)

 

Norherdawati Kasim 1,3*, Abdul Wahab Mohammad 1,2, Siti Rozaimah Sheikh Abdullah1 

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

2Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Department of Chemistry, Centre for Defence Foundation Studies,

National Defence University of Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Malaysia

 

*Corresponding author: herdawati@upnm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Iron and manganese present naturally in groundwater. Both metallic ions at excessive amounts normally contribute to rusty taste and reddish color to the water. Membrane technology may improve the conventional groundwater treatment method which commonly requires a large area and a lot of manpower. The present experimental work focused on membrane filtration of iron and manganese in order to study the influence of pH adjustment to the prepared artificial groundwater based on the permeate quality and membrane performances. In this study, two commercially available polyamide nanofiltration and ultrafiltration membranes (PA-NF, PA-UF) were tested to examine their capabilities in treating groundwater for drinking water resources. In order to achieve WHO drinking water standard, permeate quality of the artificial groundwater is considered satisfy if concentration of iron and manganese has reached 0.3 and 0.1 mg/L, respectively. Experimental results showed that pH at a range of 3-11 have significantly improved membrane performance in terms of their rejection. Rejection of iron at a feed concentration of 100 mg/L increased as pH of the feed solution increased for all tested membranes. However, the manganese rejection with a feed concentration at 50 mg/L showed various pattern of performance for each membrane. The pH of feed solution played an important role in changing the membrane surface properties and also, the characteristic of solute. This concludes that solute-membrane interaction mechanism has improved the performance of the tested membranes.

 

Keywords:  iron rejection, manganese rejection, artificial groundwater, pH adjustment, drinking water

 

Abstrak

Besi dan mangan wujud semulajadi di dalam air bawah tanah. Kedua-dua ion logam ini pada jumlah yang berlebihan menyumbang kepada rasa berkarat dan warna yang kemerahan pada air. Kajian ini memberi tumpuan kepada penurasan logam besi dan mangan oleh membran dengan tujuan untuk mengkaji kesan pelarasan pH terhadap air bawah tanah buatan berdasarkan kepada kualiti telapan dan prestasi membran. Dalam ujikaji ini, dua membran poliamida penurasan-nano dan penurasan-ultra (PA-NF, PA-UF) yang boleh didapati secara komersial telah diuji untuk mengkaji keupayaan dalam merawat air bawah tanah sebagai sumber air minuman. Untuk mencapai piawaian WHO bagi air minuman, kualiti telapan air bawah tanah buatan dianggap memuaskan jika kepekatan besi dan mangan masing-masing mencapai 0.3 dan 0.1 mg/L. Keputusan ujikaji menunjukkan bahawa pH di antara julat 3-11 dengan ketaranya telah menambahbaik prestasi membran dari segi penyingkiran. Penyingkiran besi pada kepekatan suapan 100 mg/L telah meningkat apabila pH suapan meningkat untuk semua membran yang diuji. Walau bagaimanapun, penyingkaran mangan dengan kepekatan suapan pada 50 mg/L menunjukkan kepelbagaian corak prestasi bagi setiap membran. pH larutan suapan memainkan peranan penting dalam mengubah sifat-sifat permukaan membran dan juga sifat bahan terlarut. Kesimpulannya, mekanisme interaksi bahan terlarut-membran telah meningkatkan prestasi membran yang diuji.

 

Kata kunci:  penyingkiran besi, penyingkiran mangan, air bawah tanah, pelarasan pH, air minuman

 

References

1.       Filip, Z. and Demnerova, K. (2009). Survival in groundwater and FT-IR characterization of some pathogenic and indicator bacteria. Threats to Global Water Security: 117 – 122.

2.       Stewardship, W., Series, I. (2007). Iron & manganese in groundwater, Br. Columbia Groundwater Association.

3.       Ahmad, M. (2012). Iron and manganese removal from groundwater, Thesis University of Oslo.

4.       Marchovecchio, R. H., Botte, J. E. and Freiji, S. E (2011).  Heavy metals, major metals, trace elements, in: Handbook Water Analysis, CRC Press.

5.       World Health Organization, WHO. (2008). Guidelines for drinking-water quality, in: Recomendations, Volume1, 3rd edition, World Health Organization, Geneva: pp. 390 – 399.

6.       Chaturvedi, S. and Dave, P. N. (2012). Removal of iron for safe drinking water. Desalination, 303:  1–11.

7.       Jusoh, A., Cheng, W. H., Low, W. M., Nora’aini, A. and Megat Mohd Noor, M. J. (2005). Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination, 182: 347 –353.

8.       Ellis, D., Bouchard, C. and Lantagne, G. (2000) Removal of iron and manganese from groundwater by oxidation and microfiltration. Desalination, 130:  255 – 264.

9.       Abdul Kadir, A., Othman, N. B. and Azmi, N. M (2012). Potential of using Rosa Centifolia to remove iron and manganese in groundwater treatment. International Journal of Sustainable Construction Engineering Technology, 3: 70 – 82.

10.    Hussin, N. H., Yusoff, I., Alias, Y., Mohamad S., Rahim, N.Y. and Ashraf, M. A. (2013). Ionic liquid as a medium to remove iron and other metal ions: A case study of the North Kelantan Aquifer, Malaysia. Environmental Earth Science, 71:  2105 – 2113.

11.    Choo, K.-H., Lee, H and Choi., S.-J. (2005). Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. Journal of Membrane Science, 267: 18 – 26.

12.    Potgieter, J. H., Mccrindle R. I., Sihlali, Z., Schwarzer R. and Basson, N. (2005). Removal of iron and manganese from water a high organic carbon loading part I : The effect of various coagulants. Water, Air Soil Pollution, 162: 49 – 59.

13.    Lin, J. L., Huang, C., Pan, J. R. and Wang, Y. S. (2013). Fouling mitigation of a dead-end microfiltration by mixing-enhanced preoxidation for Fe and Mn removal from groundwater. Colloids Surfaces A Physicochemical and Engineering Aspects, 419: 87 – 93.

14.    De Munari, A. and Schäfer, A. I. (2010). Impact of speciation on removal of manganese and organic matter by nanofiltration. Journal of Water Supply Research and Technology Aqua, 59 : 152 – 163.

15.    Kasim, N., Mohammad, A.W. and Abdullah, S. R. S. (2015). Characterization of hydrophilic nanofiltration and ultrafiltration membranes for groundwater treatment as potable water resources. Desalination and Water Treatment, 57(17): 7711 – 7720.

16.    Bordoloi, S., Nath, M. and Dutta, R. K. (2013). pH-conditioning for simultaneous removal of arsenic and iron ions from groundwater. Process Safety and Environmental Protection, 91: 405 – 414.

17.    Al-Rashdi, B. A. M., Johnson, D. J. and Hilal, N. (2013). Removal of heavy metal ions by nanofiltration. Desalination, 315: 2 – 17.

18.    Kabsch-Korbutowicz, M. and Winnicki, T. (1996). Application of modified polysulfone membranes to the treatment of water solutions containing humic substances and metal ions. Desalination, 105: 41 – 49.

19.    De Munari, A., Semiao, A. J. C. and Antizar-Ladislao, B. (2013). Retention of pesticide endosulfan by nanofiltration: Influence of organic matter-pesticide complexation and solute-membrane interactions. Water Research, 47: 3484 – 3496.

20.    Waite, T. D. (2005). Chemical speciation effects in nanofiltration separation, in: T.D. Schäfer, Andrea I., Fane, A.G., Waite (Ed.), Nanofiltration-principles Application. Elsevier B.V.: pp. 148 – 168.

21.    Bordoloi, S., Nath, S. K., Gogoi, S. and Dutta, R. K. (2013). Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: Laboratory and field studies. Journal of Hazardous Materials, 260: 618 – 626.

 




Previous                    Content                    Next