Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1458 – 1466

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-26

 

 

 

PREPARATION OF LANTHANUM STRONTIUM COBALT OXIDE POWDER BY A MODIFIED SOL-GEL METHOD

 

(Penyediaan Serbuk Lantanum Strontium Kobalt Oksida Melalui Kaedah Sol-Gel Terubahsuai)

 

Abdullah Abdul Samat1, Mahendra Rao Somalu1*, Andanastuti Muchtar1,2, Nafisah Osman3

 

1Fuel Cell Institute

2Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Faculty of Applied Sciences,

Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: mahen@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

A simple low temperature synthesis route has been presented for the preparation of single perovskite phase of La0.6Sr0.4CoO3-δ (LSCO) for cathode application in intermediate temperature proton conducting solid oxide fuel cell (SOFC). A wet chemical method namely a modified sol-gel method has been applied in this work. In this method, a combined citric acid and ethylenediaminetetraacetic acid (EDTA) has been used as a chelating agent. Ethylene glycol (EG) and activated carbon (AC) have been used as surfactants in this process. The synthesized powders were characterized by X-ray diffractometer (XRD), scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) spectrometer and particle size analyzer (PSA) for phase formation, morphology and particle size analysis, respectively. XRD result revealed that a single LSCO perovskite phase for both surfactants formed at calcination temperature of 900 °C. The produced single phase powders consist of homogeneous and almost identical shape of particles as shown in SEM images. However, the powder prepared using EG has a smaller average particle size diameter as compared with the powder prepared using AC which is 149 nm and 190 nm, respectively.

 

Keywords:  modified sol-gel, surfactant, cathode, solid oxide fuel cell, single perovskite phase of La0.6Sr0.4CoO3-δ

 

Abstrak

Satu kaedah sintesis ringkas pada suhu rendah telah dibentangkan untuk menyediakan fasa tunggal perovskit La0.6Sr0.4CoO3-δ (LSCO) bagi aplikasi katod di dalam konduktor proton sel bahan api oksida pepejal (SFOP) suhu sederhana. Satu kaedah kimia basah, iaitu, kaedah sol-gel terubahsuai telah digunakan dalam penyelidikan ini. Melalui kaedah ini, gabungan asid sitrik dan asid atelindiamintetrasetik (EDTA) telah digunakan sebagai agen pengikat. Etilena glikol (EG) dan karbon teraktif (AC) telah digunakan sebagai surfaktan dalam proses ini. Serbuk yang disintesis telah dicirikan dengan menggunakan pembelauan sinar-X (XRD), mikroskop elektron pengimbas (SEM) dilengkapi dengan spektroskopi sinar-X sebaran tenaga (EDX) dan penganalisis saiz zarah (PSA) bagi analisis pembentukan fasa, morfologi dan saiz zarah, masing-masing. Keputusan XRD menunjukkan fasa tunggal perovskit LSCO bagi kedua-dua surfaktan telah terbentuk pada suhu pengkalsinan 900 °C. Serbuk berfasa tunggal yang terhasil terdiri daripada zarah yang homogen dan mempunyai bentuk yang hampir sama seperti ditunjukkan dalam imej SEM. Walau bagaimanapun, serbuk yang dihasilkan menggunakan EG mempunyai purata diameter saiz zarah yang lebih kecil iaitu 149 nm berbanding serbuk yang dihasilkan menggunakan AC iaitu 190 nm.

 

Kata kunci:  sol-gel terubahsuai, surfaktan, katod, proton sel bahan api oksida pepejal, fasa tunggal perovskit La0.6Sr0.4CoO3-δ

 

References

1.       Tao, Z., Bi, L., Yan, L., Sun, W., Zhu, Z., Peng, R. and Liu, W. (2009). A novel single phase cathode material for a proton-conducting SOFC. Electrochemical Communication, 11(3): 688 – 690.

2.       Handal, H. T. and Thangadurai, V. (2013). Evaluation of chemical stability, thermal expansion coefficient, and electrical properties of solid state and wet-chemical synthesized Y and Mn-codoped CeO2 for solid oxide fuel cells. Journal of Power Sources, 243: 458 – 471.

3.       Bi, L., Fabbri, E. and Traversa, E. (2012). Novel Ba0.5Sr0.5(Co0.8Fe0.2)1 − xTixO3−δ (x = 0, 0.05, and 0.1) cathode materials for proton-conducting solid oxide fuel cells. Solid State Ionics, 214: 1 – 5.

4.       Goupil, G., Delahaye, T., Gauthier, G., Sala, B. and Joud, F. L. (2012). Stability study of possible air electrode materials for proton conducting electrochemical cells. Solid State Ionics, 209 – 210: 36 – 42.

5.       Ling, Y., Wang, F., Zhao, L., Liu, X. and Lin, B. (2014). Comparative study of electrochemical properties of different composite cathode materials associated to stable proton conducting BaZr0.7Pr0.1Y0.2O3-δ electrolyte. Electrochimica Acta, 146: 1 – 7.

6.       Yu, T., Mao, X. and Ma, G. (2014). Performance of cobalt-free perovskite La0.6Sr0.4Fe1−xNbxO3−δ cathode materials for proton-conducting IT-SOFC. Journal Alloys Compounds, 608: 30 – 34.

7.       Tolchard, J. R. and Grande, T. (2007). Chemical compatibility of candidate oxide cathodes for BaZrO3 electrolytes. Solid State Ionics, 178(7–10): 593 – 599.

8.       Tao, Y., Shao, J., Wang, J. and Wang, W.G. (2008). Synthesis and properties of La0.6Sr0.4CoO3−δ nanopowder, Journal of Power Sources, 185(2): 609 – 614.

9.       Shao, Z., Zhou, W. and Zhu, Z. (2012). Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science, 57(4): 804 – 874.

10.    Wongmaneerung, R., Yimnirun, R. and Ananta, S. (2009). Effect of two-stage sintering on phase formation, microstructure and dielectric properties of perovskite PMN ceramics derived from a corundum Mg4Nb2O9 precursor. Materials Chemistry and Physics, 114(2–3): 569 – 575.

11.    Heel, A., Holtappels, P. and Graule, T. (2010). On the synthesis and performance of flame-made nanoscale La0.6Sr0.4CoO3−δ and its influence on the application as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 195(19): 6709 – 6718.

12.    Acuña, L. M., Peña-Martínez, J., Marrero-López, D., Fuentes, R. O., Nuñez, P. and Lamas, D.G. (2011). Electrochemical performance of nanostructured La0.6Sr0.4CoO3−δ and Sm0.5Sr0.5CoO3−δ cathodes for IT-SOFCs. Journal of Power Sources, 196(22): 9276 – 9283.

13.    Bansal, N. P. and Zhong, Z. (2006). Combustion synthesis of Sm0.5Sr0.5CoO3−x and La0.6Sr0.4CoO3−x nanopowders for solid oxide fuel cell cathodes. Journal of Power Sources, 158(1): 148 – 153.

14.    Hayd, J., Dieterle, L., Guntow, U., Gerthsen, D. and Ivers-Tiffée, E. (2011). Nanoscaled La0.6Sr0.4CoO3−δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance. Journal of Power Sources, 196(17): 7263 – 7270.

 




Previous                    Content                    Next