Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1066 - 1072

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-11

 

 

 

Effects of rain pH, soil organic matter, cation exchange capacity and total lead content in shooting range soil on the concentration of lead in leachate

 

(Kesan pH Hujan, Jirim Organik Tanah, Kapasiti Tukaran Kation dan Kandungan Plumbum di dalam Tanah Lapang Sasar ke atas Kepekatan Plumbum di dalam Air Larut Lesap)

 

Soon Kong Yong1*, Siti Norazieyana Mohd Zin1, Madinah Jaafar Mad Ariff2

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Centre for Foundation Studies,

Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia

 

*Corresponding author: yongsk@salam.uitm.edu.my

 

 

Received: 17 August 2015; Accepted: 23 May 2016

 

 

Abstract

Leaching of lead (Pb) from the shooting range soil may contaminate water resource if rain pH decreases and soil has a low cation exchange capacity (CEC). Over exposure of Pb may cause brain injury and death. In this study, leaching of Pb from shooting range soil was simulated with column leaching test using artificial rain at pH 4 and 7. Soil physico-chemical parameters (i.e. pH, organic matter (OM), and CEC) were determined, and its’ correlation with Pb concentrations in soil (Soil Pb) and leachate (Leachate Pb) were studied using Pearson’s correlation. Compare to control soil, shooting range soil has higher contents of Pb (12,163 – 17,278 mg/kg, dry weight basis) and sand (64 – 68 %). The CEC value of shooting range soil (193 cmol/kg at pH 7) is lower than those in control soil (85 – 140 cmol/kg at pH 7), possibly due to low contents of clay and OM. There is positive correlation between Soil Pb and Leachate Pb variable pair (r = 0.94; p = 0.06); while Soil OM and Leachate Pb variable pair has a negative correlation (r = -0.94; p = 0.06). In conclusion, the combination of high soil Pb content, low CEC, and low rain pH increases leaching of Pb from shooting range soil.

 

Keywords:  lead shots, heavy metal, groundwater, acid rain, sorption

 

Abstrak

Larut lesap Pb daripada tanah lapang sasar boleh mencemarkan sumber air jika nilai pH hujan menurun dan tanah mempunyai keupayaan pertukaran kation (CEC) yang rendah. Pendedahan Pb yang keterlaluan boleh menyebabkan kecederaan otak dan kematian. Dalam kajian ini, larut lesap Pb dari tanah lapang sasar telah disimulasikan dengan ujian larut lesap turus menggunakan air hujan tiruan pada pH 4 dan 7. Parameter tanah (iaitu, pH, jirim organik (OM), dan CEC) telah ditentukan, dan dikaji korelasinya dengan kepekatan Pb di dalam tanah dan larut resap dengan menggunakan korelasi Pearson. Berbanding dengan tanah kawalan, kandungan Pb (12163 – 17278 mg/kg, secara berat kering) dan pasir (64 – 68 %) pada tanah lapang sasar adalah lebih tinggi. Nilai CEC tanah lapang sasar (193 cmol/kg pada pH 7) adalah lebih rendah daripada tanah kawalan (85 – 140 cmol/kg pada pH 7), mungkin disebabkan oleh kandungan rendah tanah liat dan jirim organik. Terdapat hubungan yang positif antara pasangan pemboleh ubah Pb tanah dan Pb larut lesap (r = 0.94; p = 0.06); manakala pasangan pemboleh ubah jirim organik tanah dan Pb larut lesap mempunyai korelasi negatif (r = -0,94; p = 0.06). Kesimpulannya, gabungan faktor-faktor seperti kandungan Pb yang tinggi di dalam tanah, nilai CEC tanah yang rendah dan nilai pH hujan yang rendah boleh meningkatkan risiko larut lesap Pb dari tanah lapang sasar.

 

Kata kunci: peluru plumbum, logam berat, air bawah tanah, hujan berasid, jerapan
 

References

1.       Clausen, J., Bostick, B. and Korte, N. (2011). Migration of lead in surface water, pore water, and groundwater with a focus on firing ranges. Critical Reviews in Environmental Science and Technology, 41(15): 1397 – 1448.

2.       Hardison Jr, D. W., Ma, L. Q., Luongo, T. and Harris, W. G. (2004). Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Science of the Total Environment, 328(1–3): 175 – 183.

3.       Cao, X., Ma, L. Q., Chen, M., Hardison, D. W. and Harris, W. G. (2003). Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Science of the Total Environment, 307(1): 179 – 189.

4.       Sorvari, J., Antikainen, R. and Pyy, O. (2006). Environmental contamination at Finnish shooting ranges the scope of the problem and management options. Science of the Total Environment, 366(1): 21 – 31.

5.       Ayers, G., Peng, L. C., Gillett, R. and Fook, L. S. (2002). Rainwater composition and acidity at five sites in Malaysia, in 1996. Water, Air, and Soil Pollution, 133(1-4): 15 – 30.

6.       Asadu, C. L. A., Diels, J. and Vanlauwe, B. (1997). A comparison of the contributions of clay, silt, and organic matter to the effective CEC of soils of Subsaharian Africa. Soil Science, 162(11): 785 – 794.

7.       Darling, C. T. R. and Thomas, V. G. (2003). The distribution of outdoor shooting ranges in Ontario and the potential for lead pollution of soil and water. Science of the Total Environment, 313(1–3): 235 – 243.

8.       USEPA, (2002). Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response, USEPA: Washington, D.C.

9.       Department of Environment (2009). Environmental quality (control of pollution from solid waste transfer station and landfill) regulations. PU(A) 433.

10.    Sauvé, S., McBride, M. and Hendershot, W. (1998). Soil solution speciation of lead(II): Effects of organic matter and pH. Soil Science Society of America Journal, 62(3): 618 – 621.

11.    Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad, J., Thies, J., Luizao, F. and Petersen, J. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5): 1719 – 1730.

12.    Yong, S. K., Bolan, N., Lombi, E. and Skinner, W. (2015). Enhanced Zn(II) and Pb(II) removal from wastewater using thiolated chitosan beads (ETB). Malaysian Journal of Analytical Sciences, 19(3): 586 – 594.

13.    Liew, H. H., Tay, C. C., Yong, S. K., Surif, S. and Abdul Talib, S. (2010). Biosorption characteristics of lead [Pb(II)] by Pleurotus ostreatus biomass. Proceedings of  International Conference on Science and Social Research (CSSR). 2010. Kuala Lumpur.

14.    Makmom Abdullah, A., Armi Abu Samah, M. and Yee Jun, T. (2012). An overview of the air pollution trend in Klang Valley, Malaysia. Open Environmental Sciences, 6(1): 13 – 19.

 




Previous                    Content                    Next