Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 965 - 970

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-32

 

 

 

STRUCTURAL STUDY OF REDUCED GRAPHENE OXIDE/POLYPYRROLE COMPOSITE AS METHANOL SENSOR IN DIRECT METHANOL

FUEL CELL

 

(Kajian Struktur Komposit Grafin Oksida Terturun/Polipirol Sebagai Sensor Metanol Dalam Sel Bahan Api Metanol Langsung)

 

Mumtazah Atiqah Hassan1, Siti Kartom Kamarudin1, 2*, Kee Shyuan Loh1

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: ctie@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

Density functional theory (DFT) computations were performed on the optimized geometric and electronic properties of reduced graphene oxide/polypyrole (rGO/PPy) composite in comparison with pure graphene and graphene oxide structures. Incorporation of both reduced GO (rGO) and PPy will form a good composite which have advantages from both materials such as good mechanical strength and excellent electrical conductivity.  These composite would be very suitable in fabrication of methanol sensor in direct methanol fuel cell (DMFC). The HOMO-LUMO energy (eV) was also calculated. These computations provide a theoretical explanation for the good performance of rGO/PPy composite as electrode materials in methanol sensor.

 

Keywords:  graphene, structure, polypyrrole, direct methanol fuel cell, density functional theory

 

Abstrak

Pengiraan teori fungsi ketumpatan (DFT) telah dilakukan ke atas ciri optimum geometri dan elektronik oksida komposit grafin terturun/polipirol (rGO/PPy) berbanding dengan grafin dan grafin oksida berstruktur tulen. Gabungan kedua-dua GO terturun (rGO) dan PPy akan membentuk komposit yang baik yang mempunyai kelebihan dari kedua-dua bahan seperti kekuatan mekanikal dan kekonduksian elektrik yang sangat baik. Komposit ini menjadi sangat sesuai dalam pembuatan sensor metanol dalam sel bahan api metanol langsung (DMFC). Tenaga HOMO-LUMO (eV) juga telah dikira. Pengiraan ini memberikan penjelasan teori untuk prestasi baik rGO/PPy komposit sebagai bahan elektrod dalam sensor metanol.

 

Kata kunci:  grafin, struktur, polipirol, sel bahan api metanol langsung, teori fungsi ketumpatan

 

References

1.       Basri, S., Kamarudin, S. K., Daud, W. R. W. and Ahmad, M. M.  (2010). Non-linear optimization of passive direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy, 35: 1759 – 1768.

2.       Hashim, N., Kamaruddin S. K. and Daud W. R. W (2010). Design and development of micro direct methanol fuel cell (μdmfc) for portable application. Sains Malaysiana, 39(6): 1015 – 1023.

3.       Hassan, M. A., Kamaruddin, S. K., Loh, K. S. and Daud, W. R. W. (2014). Sensors for direct methanol fuel cell. Renewable and Sustainable Energy Reviews, 40: 1060 – 1069.

4.       Ahmad, M. M, Kamarudin, S. K. and Daud W. R. W. (2010). Design of an optimal micro direct methanol fuel cell for portable applications. Sains Malaysiana, 39(3): 467 – 472.

5.       Bora, C., and Dolui, S. K. (2012). Fabrication of polypyrrole/graphene oxide nanocomposites by liquid /liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer, 53(4): 923 – 932.

6.       Potts, J. R., Dreyer, D. R., Bielawski, C. W. and Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1): 5 – 25.

7.       Karamdel, J., Damghanian, M., Razaghian, F., Dee, C. F., and B. Yeop Majlis (2010). Dependence of band structure and carrier concentration of metallic (13,13) and semiconducting (13,0) single wall carbon nanotube on temperature. Sains Malaysiana, 39(4): 615 – 620.

8.       Dreyer, D. R., Park, S., Bielawski, C. W. and Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1): 228 – 240.

9.       Saner, B., Gürsel, S. A. and Yürüm, Y. (2013). Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells. Fullerenes, Nanotubes and Carbon Nanostructures, 21(3): 233 – 247.

10.    Liu, G., Zhuang, X., Chen, Y., Zhang, B., Zhu, J., Zhu, C.-X., Neoh, K-G. and Kang, E.-T. (2009). Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Applied Physics Letters, 95(25): 253301.

11.    Chandra, V., and Kim, K. S. (2011). Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chemical Communications, (47): 3942 – 3944.

12.    Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M. and Shenoy, V. B. (2010). Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2(7): 581 –587.

13.    Qi, X., Guo, X. and Zheng, C. (2012). Density functional study the interaction of oxygen molecule with defect sites of graphene. Applied Surface Science, 259: 195 – 200.

14.    Huh, D. S., Basavaraja, C. and Jung, K. W. (2012). Polypyrrole/graphene oxide composites with improved conductivity and solubility. Plastic Research Online, 50: 10 – 11.

15.    Liu, Y., Zhang, Y., Ma, G., Wang, Z., Liu, K. and Liu, H. (2013). Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochimica Acta, 88: 519 – 525.

 




Previous                    Content                    Next