Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 931 - 945

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-29

 

 

 

PROTON EXCHANGE MEMBRANE FUEL CELL/SUPERCAPASITOR HYBRID POWER MANAGEMENT SYSTEM FOR A GOLF CART

 

(Sistem Pengurusan Kuasa Hibrid Sel Bahan Api Membran Penukaran Proton/Superkapasitor untuk Kereta Golf)

 

Siti Afiqah Abd. Hamid1, Ros Emilia Rosli1, Edy Herianto Majlan1*, Wan Ramli Wan Daud1, Ramizi Mohamed2, Teuku Husaini1, Ramli Sitanggang 3

 

1Fuel Cell Institute

2Department of Electrical and System Engineering, Faculty of Engineering & Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Department of Chemical Engineering, Faculty of Industrial Engineering,

Universitas Pembangunan Nasional “Veteran” Yogyakarta, Yogyakarta 55283, Indonesia

 

*Corresponding author: edy@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

This paper presented the transformation of a golf cart system powered lead acid battery into an environmental friendly hybrid vehicle. The design developed by using an advantage contributes by the uprising alternative power source candidate which is Proton Exchange Membrane Fuel Cell (PEMFC) and the maintenance free energy storage device, a supercapacitor (SC). The fuel cell (FC) stack was an in house manufactured with 450 W (36 V, 12.5 A) power, while the SC was from Maxwell Technologies (48 V, 165 F). This two power sources were controlled by the mechanical relay, meanwhile the reactant (hydrogen) are control by mass flow controller (MFC) both signaled by a National Instrument (NI) devices. The power management controller are programmed in the LabVIEW environment and then downloaded to the NI devices. The experimental result of the power trend was compared before and after the transformation with the same route to validate the effectiveness of the proposed power management strategy. The power management successfully controls the power sharing between power sources and satisfies the load transient. While the reactant control managed to vary the hydrogen mass flow rate feed according to the load demand in vehicular applications.

 

Keywords:  proton exchange membrane fuel cell, supercapacitor, hybrid, power management strategy

 

Abstrak

Kertas kerja ini membentangkan tentang transformasi sistem kereta golf dikuasakan oleh bateri asid plumbum kepada kenderaan hibrid yang mesra alam. Reka bentuk ini dibangunkan dengan menggunakan kelebihan yang disumbangkan oleh sumber kuasa alternatif iaitu Sel Bahan Api Membran Penukaran Proton (PEMFC) bersama peranti penyimpanan tenaga tanpa penyelenggaraan, Superkapasitor (SC). Tindanan Sel Bahan Api (FC) telah dibina sendiri dengan kuasa 450 W (36 V, 12.5A) manakala SC adalah dari Teknologi Maxwell (48V, 165F). Kedua-dua sumber kuasa ini dikawal menggunakan geganti mekanikal, sementara itu bahan tindak balas (hidrogen) dikawal menggunakan meter pengawal aliran (MFC) yang kedua-dua diisyaratkan dengan menggunakan peranti Instrumen Nasional (NI). Pengawal pengurusan kuasa diprogramkan di dalam persekitaran LabVIEW dan kemudiannya dimuat turun kepada peranti NI. Hasil eksperimen trend kuasa telah dibandingkan sebelum dan selepas transformasi dengan laluan yang sama untuk mengesahkan keberkesanan strategi pengurusan tenaga yang dicadangkan. Pengurusan kuasa ini berjaya mengawal perkongsian kuasa di antara sumber kuasa dan memenuhi kehendak beban fana. Manakala kawalan bahan tindak balas berjaya mengurus kadar aliran hidrogen mengikut permintaan beban dalam aplikasi kenderaan.

 

Kata kunci:  sel bahan api membran penukaran proton, superkapasitor, hibrid, strategi pengurusan kuasa

 

References

1.       Chen, B. (2009). Ultracapacitor boosted fuel cell hybrid vehicle, elecrical engineering. Thesis Msc: pp. 130.

2.       Erdinc, O., Vural, B. and Uzunoglu M. (2009). A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system. Journal of Power Sources, 194(1): 369 – 380.

3.       El-Sharkh, M.Y., Rahman, A. and Alam, M.S. (2004). Neural networks-based control of active and reactive power of a stand-alone PEM fuel cell power plant. Journal of Power Sources, 135(1-2): 88 – 94.

4.       Thanapalan, K. K. T., Williams, J. G., Liu, G. P., and Rees, D. (2008). Modelling of a PEM fuel cell system. Proceeding of the 17th World Congress - The International Federation of Automatic Control, Seoul, Korea.

5.       Shen, M., Meuleman, W. and Scott K. (2003). The characteristics of power generation of static state fuel cells. Journal of Power Sources, 115(2): 203 – 209.

6.       Shen, M. and Scott, K. (2005). Power loss and its effect on fuel cell performance. Journal of Power Sources, 148: 24 – 31.

7.       Uzunoglu, M. and Alam, M. S. (2007). Dynamic modeling, design and simulation of a PEM fuel cell/ultra-capacitor hybrid system for vehicular applications. Energy Conversion and Management, 48(5): 1544 – 1553.

8.       Jeong, K. S., Lee, W. Y. and Kim, C. S. (2005). Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics. Journal of Power Sources, 145(2): 319 – 326.

9.       Thounthong, P., Raël, S. and Davat, B. (2006). Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. Journal of Power Sources, 158(1): 806 – 814.

10.    Bernard, J., Hofer, M., Hannesen, U., Toth, A., Tsukada, A., Büchi, F. N. and Dietrich, P. (2011). Fuel cell/battery passive hybrid power source for electric powertrains. Journal of Power Sources, 196(14): 5867 –  5872.

11.    Erdinc, O. and Uzunoglu, M. (2010). Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches. Renewable and Sustainable Energy Reviews, 14(9): 2874 – 2884.

12.    Ates, Y., Erdinc, O., Uzunoglu, M. and Vural, B. (2010). Energy management of an FC/UC hybrid vehicular power system using a combined neural network-wavelet transform based strategy. International Journal of Hydrogen Energy, 35(2): 774 – 783.

13.    Caux, S., Hankache, W., Fadel, M. and Hissel, D. (2010). On-line fuzzy energy management for hybrid fuel cell systems. International Journal of Hydrogen Energy. 35(5): 2134 – 2143.

14.    Fernandez, L. M., Garcia, P., Garcia, C. A. and Jurado, F. (2011). Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway. Energy Conversion and Management, 52(5): 2183 – 2192.

15.    Khaligh, A. and Zhihao, L. (2010). Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Transactions on Vehicular Technology, 59(6): 2806 – 2814.

16.    Lin, W.S. and Zheng, C.H. (2011). Energy management of a fuel cell/ultracapacitor hybrid power system using an adaptive optimal-control method. Journal of Power Sources, 196(6): 3280 – 3289.

17.    Thounthong, P., Pierfederici, S., Martin, J. P., Hinaje, M. and Davat, B. (2010). Modeling and control of fuel cell/supercapacitor hybrid source based on differential flatness control. IEEE Transactions on Vehicular Technology, 59(6): 2700 – 2710.

18.    Torreglosa, J. P., Jurado, F., García P. and Fernández, L. M. (2011). Application of cascade and fuzzy logic based control in a model of a fuel-cell hybrid tramway. Engineering Applications of Artificial Intelligence, 24(1): 1 – 11.

19.    Fernandez, L. M., Garcia, P., Garcia, C. A., Torreglosa, J. P. and Jurado, F. (2010). Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters. International Journal of Hydrogen Energy, 35(11): 5731 – 5744.

20.    Payman, A., Pierfederici, S. and Meibody-Tabar, F. (2008). Energy control of supercapacitor/fuel cell hybrid power source. Energy Conversion and Management, 49(6): 1637 – 1644

21.    Eren, Y., Erdinc, O., Gorgun, H., Uzunoglu, M. and Vural, B. (2009). A fuzzy logic based supervisory controller for an FC/UC hybrid vehicular power system. International Journal of Hydrogen Energy, 34(20): 8681 – 8694.

22.    Erdinc, O., Vural, B., Uzunoglu, M. and Ates, Y. (2009). Modeling and analysis of an FC/UC hybrid vehicular power system using a wavelet-fuzzy logic based load sharing and control algorithm. International Journal of Hydrogen Energy, 34(12): 5223 – 5233.

23.    Sakhare, A., Davari, A. and Feliachi, A. (2004). Fuzzy logic control of fuel cell for stand-alone and grid connection. Journal of Power Sources, 135(1-2): 165 – 176.

24.    Ke, J., Xinbo, R., Mengxiong, Y. and Min, X. (2008). Power management for hybrid fuel cell system. IEEE in Power Electronics Specialists Conference: 504 – 509.

25.    Bizon, N. (2011). Nonlinear control of fuel cell hybrid power sources: Part I - Voltage control. Applied Energy, 88(7): 2559 – 2573.

26.    Thanapalan, K., Fan, Z., Premier, G., Maddy, J.  and Guwy, A.  (2011). Control-oriented PEM fuel cell system modeling and repetitive controller design. 2nd International Conference on Intelligent Control and Information Processing (ICICIP), 2: 1055 – 1060.

27.    Li, F., Li, D. & Yang, R.  (2009) A Dynamic Model of PEM Fuel Cell Stack System for Real Time Simulation. Power and Energy Engineering Conference: 1 – 5

28.    Lu-Ying, C., Diong, B. and Gemmen, R.S.  (2004). An improved small-signal model of the dynamic behavior of PEM fuel cells. IEEE Transactions on Industry Applications, 40(4): 970 – 977.

29.    Caponetto, R., Fortuna, L. and Rizzo. A. (2005). Neural network modelling of fuel cell systems for vehicles. 10th IEEE Conference on Emerging Technologies and Factory Automation ETFA, 1: 6.

30.    Tae-Hoon, K. and Woojin, C. (2009). Control system design for the small proton exchange membrane fuel cell stack. 31st International Telecommunications Energy Conference: 1 – 6.

31.    Hou, Y., Shen, C., Yang, Z. and He, Y. (2012). A dynamic voltage model of a fuel cell stack considering the effects of hydrogen purge operation. Renewable Energy, 44: 246 –  251.

32.    Chen, D., Li, W. and Peng, H. (2008). An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. Journal of Power Sources, 180(1): 461 – 467.

33.    Ye, Q., Cui, H. and Deng, M. (2010). Design of a 100W fuel cell test system. Power and Energy Engineering Conference (APPEEC): 1  4.

34.    Rosli, R. E., Majlan, E. H., Wan Daud, W. R. and Hamid, S. A. A. (2012). Hydrogen rate manipulation of proton exchange membrane fuel cell (PEMFC) stack using feedback control system. IEEE International Conference on Power and Energy (PECon): 553  557.

 




Previous                    Content                    Next