Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 885 - 891

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-24

 

 

 

SYNTHESIS AND CHARACTERISATION OF CHITOSAN-CELLULOSE BIOCOMPOSITE MEMBRANE FOR FUEL CELL APPLICATIONS

 

(Sintesis dan Pencirian Membran Biokomposit Kitosan-Selulosa untuk Aplikasi Sel Bahan Api)

 

Nur Fatin Ab. Rahman1, Kee Shyuan Loh1*, Abu Bakar Mohamad1,2, Abdul Amir Hassan Kadhum1,2,

Kean Long Lim1

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: ksloh@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

In this work, proton exchange membranes (PEMs) based on chitosan (CS) and cellulose (CL) have been prepared using a solution-casting technique with sulfosuccinic acid (SSA) as an ionic cross linker. The characteristics of these CS-CL biocomposite membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) in addition to the measurement of the water uptake rate (WUR) and the ion exchange capacity (IEC). The results indicate that the amount of SSA used in this study played a significant role in the proton conduction of the membrane. The proton conductivity of a cross-linked CS-CL membrane was on the order of 10-5 S cm-1, which is greater than the proton conductivity of a pure CS membrane.

 

Keywords:  proton exchange membranes, chitosan, cellulose, biocomposite, membrane

 

Abstrak

Dalam kajian ini, membran penukaran proton (PEM) berasaskan kitosan (CS) dan selulosa (CL) telah disediakan dengan menggunakan teknik tuangan larutan bersama dengan asid sulfosusinik (SSA) yang berfungsi sebagai pemaut silang ion. Sifat membran biokomposit CS-CL ini dikaji menggunakan mikroskopik pengimbas elektron (SEM), spektroskopi inframerah transformasi Fourier (FTIR), spektrometer elektrokimia impedans (EIS) sebagai tambahan kepada pengukuran kadar penyerapan air (WUR) dan kapasiti penukaran ion (IEC). Keputusan menunjukkan bahawa jumlah SSA digunakan dalam kajian ini memainkan peranan penting dalam pengangkutan proton di dalam membran. Kekonduksian proton untuk CS-CL bertaut silang membran yang diperoleh adalah di dalam lingkungan 10-5 S cm-1, iaitu lebih tinggi berbanding dengan kekonduksian proton membran CS tulen.

 

Kata kunci:  membran penukaran proton, kitosan, selulosa, biokomposit, membran

 

References

1.       Higashihara, T. Matsumoto, K. and Ueda, M. (2009). Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer, 50: 5341 – 5357.

2.       Lee, D. C., Yang, H. N., Park, S. H. and Kim, W. J. (2014). Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. Journal of Membrane Science, 452: 20 – 28.

3.       Vilaplana, F., Strömberg, E. and Karlsson, S. (2010). Environmental and resource aspects of sustainable biocomposite. Polymer of Degradation and Stability, 95: 2147 – 2161.

4.       Pereda, M., Amica, G. and Marcovich, N. E. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87: 1318 – 1325.

5.       Kaco, H., Zakaria, S., Razali, N. F., Chia, C. H., Zhang, L. and Jani, S. M. (2014). Properties of cellulose hydrogel from Kenaf core prepared via pre-cooled dissolving method. Sains Malaysiana, 43(8): 1221 – 1229.

6.       Wirach Taweepreda. (2014). Dynamic mechanical and dielectric properties of modified surface chitosan/natural rubber latex. Sains Malaysiana, 43(2): 241 – 245.

7.       Zakaria, S., Chia, C. H., Ahmad, W. H. W., Kaco, H., Chook, S. W. and Chan, C. H. (2015). Mechanical and antibacterial properties of paper coated with Chitosan. Sains Malaysiana, 44(6): 905 – 911.

8.       Ma, J., Sahai, Y. and Buchheit, R. G. (2012). Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. Journal of Power Sources, 202: 18-27.

9.       Thiam, H. S., Daud, W. R. W., Kamarudin, S. K., Mohamad, A. B., Kadhum, A. A. H., Loh, K. S. and Majlan, E. H. (2012). Nafion/Pd-SiO2 nanofiber composite membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 38:  9474 – 9483.

10.    Ma, J., Choudhury, N. A., Sahai, Y. & Buchheit, R. (2011). A high performance direct borohydride fuel cell employing cross-linked chitosan membrane. Journal of Power Sources, 196: 8257 – 8264.

11.    Khan, A., Khan, R. A., Salmieri, S., Tien, C. L., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M .R. and Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90: 1601 – 1608.

12.    Pavia, D. L., Lampman, G. M. and Kriz, G. S. (2001). Introduction to spectroscopy: A Guide for students of organic chemistry. United States: Thomson Learning, Inc.

13.    Yin, J., Luo, K., Chen, X. and Khutoryanskiy, V. V. (2006). Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydrate Polymers, 63: 238 – 244.

14.    Stefanescu, C., Daly, W. H. and Negulescu, I. I. (2012). Biocomposite films prepared form ionic liquid solutions of chitosan and cellulose. Carbohydrate Polymers, 87: 435 – 443.

15.    Ávila, A., Bierbrauer, K., Pucci, G., López-González, M. and Strumia, M. (2012). Study of optimization of the synthesis and properties of biocomposite films based on grafted chitosan. Journal of Food Engineering, 109: 752 – 761.

16.    Rhim, J., Park, H., Lee, C., Jun, J., Kim, D. and Lee, Y. (2004). Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science, 238: 143 – 151.

17.    Ahmad, H., Kamarudin, S. K., Hasran, U. A. and Daud, W. R. W. (2010). Overview of hybrid membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 35: 2160 – 2175.

 

 




Previous                    Content                    Next