Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 777 - 792

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-10

 

 

 

ADSORPTION OF ANIONIC DYES FROM AQUEOUS SOLUTIONS

BY CALCINED AND UNCALCINED Mg/Al LAYERED DOUBLE HYDROXIDE

 

(Penjerapan Pewarna Ionik daripada Larutan Akues Menggunakan Mg/Al Lapisan

Dwi-Hidroksida Berkalsin dan Tanpa Kalsin)

 

Siti Mariam Sumari*, Zaini Hamzah, Nesamalar Kantasamy

 

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: sms21vic@gmail.com

 

 

Received: 9 December 2015; Accepted: 6 May 2016

 

 

Abstract

The uptake of Acid Blue 29 (AB29), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) from aqueous solutions by calcined (CLDH) and uncalcined Mg/Al layered double hydroxide (LDH) has been investigated. The adsorption process was conducted in a batch mode at 25 °C. Anionic dye removal was more efficient using the CLDH rather than LDH. The adsorption process by CLDH involved reconstruction and hydration of the calcined LDH and intercalation of AB29, RO16 and RR120. Physical characterization using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) were used to ascertain the 'memory effect' phenomenon that is structural reconstruction to regain its original LDH after rehydration. To gain insight into the mechanism of adsorption by CLDH, the pseudo-first order (PFO) and pseudo-second order (PSO) and intraparticle diffusion (IPD) kinetic models were used to analyse experimental data.   Based on the correlation coefficient (R2), the PSO has better fitting (R2 = 0.987 – 1.00) compared to PFO (R2 = 0.867 –0.990). Furthermore the values of maximum adsorption capacity, (qe) calculated from PSO model are consistent with the experimental qe indicating that the experimental kinetic data for AB29, RO16 and RR120 adsorption by CLDH are suitable for this model.  Recycling of the adsorbent, in cycles of calcination-reconstruction process promised a possibility of regeneration of CLDH.

 

Keywords:  calcined, adsorption capacity, reconstruction, memory effect, regeneration

 

Abstrak

Penyingkiran pewarna Acid Blue 29 (AB29), Reactive Orange 16 (RO16) dan Reactive Red 120 (RR120) daripada larutan akues menggunakan Mg/Al dwi-hidroksida berlapis berkalsin (CLDH) dan tanpa kalsin (LDH) telah dilakukan menggunakan kaedah berkelompok pada suhu 25 °C. Penjerapan bahan pewarna menggunakan CLDH didapati lebih berkesan berbanding LDH. Penjerapan bahan pewarna oleh CLDH berlaku melibatkan proses penghidratan dan penstrukturan semula CLDH dan juga apitan AB29, RO16 dan RR120. Pencirian fizikal pada bahan penjerap yang diperolehi dengan menggunakan kaedah Pembelauan Sinar-X (XRD), Mikroskopi Imbasan Elektron (SEM) dan Spektroskopi Inframerah Transformasi Fourier (FTIR) telah digunakan untuk mengenalpasti fenomena 'kesan memori', iaitu proses penstrukturan semula kepada LDH selepas berlaku penghidratan. Cerapan lebih lanjut mengenai mekanisme proses penjerapan ini, model-model kinetik pseudo tertib pertama (PFO), pseudo tertib kedua (PSO) dan resapan intrapartikel (IPD) telah digunakan untuk menganalisa data ujian. Berdasarkan nilai pekali korelasi (R2), model PSO didapati lebih sesuai (R2 = 0.99 – 1.00) berbanding PFO (R2 = 0.85 – 0.99). Fakta ini diperkukuhkan lagi dengan nilai kapasiti penjerapan maksimum, (qe) hasil pengiraan menggunakan PSO yang didapati konsisten dengan qe ujian (qe, expt.) untuk AB29, RO16 dan RR120.  Kitaran semula bahan penjerap melalui beberapa siri kitaran pengkalsinan-penstrukturan semula juga didapati dapat menjanjikan penjanaan semula CLDH.

 

Kata kunci: berkalsin, kapasiti penjerap, penstrukturan semula, kesan memori, penjanaan semula

 

References

1.       El Gaini, L. Lakraimi, M., Sebbar, E., Meghea, A., and Bakasse, M. (2009). Removal of indigo carmine dye from water to Mg–Al–CO3-calcined layered double hydroxides. Journal of Hazardous Materials, 161: 627 – 632.

2.       Lazaridis, N. K., Karapantsios, T. D. and Georgantas, D. (2003). Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Research, 37: 3023 – 3033.

3.       Abdelkader, N. B-H., Bentouami, A. Derriche, Z., Bettahara, N., de Menorval, L-C. Chemical. (2011). Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution. Engineering Journal, 169: 231 – 238.

4.       Das, J., Das, D. K. M. and Parida, K. M. (2006). Preparation and characterization of Mg–Al hydrotalcite-like compounds containing cerium, Journal of Colloid and Interface Science, 301: 569 –574.

5.       Auxilio, A. R., Andrews, P. C., Junk, P. C. and Spiccia, L. (2009). The adsorption behavior of C.I. Acid Blue 9 onto calcined Mg–Al layered double hydroxides. Dyes and Pigments, 81: 103 – 112.

6.       Das, J., Das, D. K. M. and Parida, K. M. (2006). Preparation and characterization of Mg–Al hydrotalcite-like compounds containing cerium, Journal of Colloid and Interface Science, 301: 569 –574.

7.       Lagergren, S. (1898). About the theory of so called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl., Band 24, 1 – 39.

8.       Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136: 681 – 689.

9.       Weber, W. J. and Morris, J. C. (1963).  Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2): 31 – 60.

10.    Reichle, W. T. (1986). Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22: 135 – 141.

11.    Forano, C., Hibino, T., Lerouxa, F. C. and Taviot-Gue, H. (2006). Layered double hydroxides. Developments in Clay Science, 1: 1021 – 1095.

12.    Kameda, T., Yamazaki, T. and Yoshioka, T. (2009). Preparation of MgAl layered double hydroxide intercalated with 2,7-Naphthalene Disulfonate and its selective uptake of aromatic compounds from aqueous solutions. Bulletin of the Chemical Society of Japan, 82: 1436 – 1440.

13.    Mahmoodi, N. M., Hayati, B. and Arami, M. (2012). Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer. Industrial Crops and Products, 35: 295 – 301.

14.    Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan, P. R. and Subburaam, C. V. (2006). Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresource Technology, 97: 1618 – 1625.

15.    Yu, L. and Luo, Y. (2014). The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. Journal of Environmental Chemical Engineering, 2: 220 – 229.

16.    Das, J., Das, D. K. M. and Parida, K. M. (2006). Preparation and characterization of Mg–Al hydrotalcite-like compounds containing cerium. Journal of Colloid and Interface Science, 301: 569 –574.

17.    Bouhent, M. M., Derriche, Z., Denoyel, R., Prevot, V., and Forano, C. (2011). Thermodynamical and structural insights of orange II adsorption by MgRAlNO3 layered double hydroxides. Journal of Solid State Chemistry, 184: 1016 – 1024.

18.    Bouraada, M., Belhalfaoui, F. and Ouali, M. S. (2009). Sorption study of an acid dye from an aqueous solution on modified Mg–Al layered double hydroxides. Journal of Hazardous Materials, 163: 463 –467.

19.    Extremera, R., Pavlovic, I., Pérez, M. R., and Barriga, C. (2012). Removal of acid orange 10 by calcined Mg/Al layered double hydroxides from water and recovery of the adsorbed dye. Chemical Engineering Journal, 213: 392 – 400.

20.    Zhu, M-X., Li, Y-P., Xie, M. and Xin, H-Z. (2005). Sorption of an anionic dye by uncalcined and calcined layered double hydroxides: A case study. Journal of Hazardous Materials, 120: 163 – 171.

21.    Ni, Z. M., Xia, S. J., Wang, L. G., Xing, F. F. and Pan, G. X. (2007). Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies. Journal of Colloid and Interface Science, 316: 284 – 291.

22.    Crepaldi, E. L., Tronto, J., Cardoso, L. P. and Valim, J. B. (2002). Sorption of terephthalate anions by calcined and uncalcined hydrotalcite-like compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211: 103 –114.

23.    Ferreira, O. P., Alves, O. L., Gouveia, D. X., Filho, A. G. S., de Paiva, J. A. C. and Filho, J. M. (2004). Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds. Journal of Solid State Chemistry, 177: 3058 – 3069.

24.    Naveen, N., Saravanan, P., Baskar, G. and Sahadevan, R. (2011). Equilibrium and kinetic modeling on the removal of Reactive Red 120 using positively charged Hydrilla verticillata. Journal of the Taiwan Institute of Chemical Engineers, 42: 463 – 469.

25.    Kobiraj, R., Gupta, N., Kushwaha, A. K. and Chattophadhyaya, M. C. (2012). Determination of equilibrium, kinetic and thermodynamic parameters for the adsorption of the brilliant green dye from aqueous solutions onto eggshell powder. Indian Journal of Chemical Technology, 20: 26 – 31.

26.    Greluk, M. and Hubicki, Z. (2010).Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chemical Engineering Journal 162: 919 – 926.

27.    Baccar, R., Blánquez, P., Bouzid, J., Feki, M., Attiya, H. and Sarrà, M. (2013).  Modelling of adsorption isotherms and kinetics of a tannery dye onto an carbon prepared from an agricultural by-product activated carbon prepared from an agricultural by-product. Fuel Processing Technology, 106: 408 – 415.

28.    Ulibarri, M. A., Pavlovic, I.. Barriga, C. Hermos´ın and Cornejo, M. C. (2001). Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity, Applied Clay Science, 18: 17 – 27.

 




Previous                    Content                    Next