Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 670 - 677

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-28

 

 

 

THERMAL PROPERTIES AND CONDUCTIVITY OF NAFION-ZIRCONIA COMPOSITE MEMBRANE

 

(Sifat Terma dan Konduktiviti Membran Komposit Nafion-Zirkonia)

 

Siti Rahmah Mokhtaruddin1, 2, Abu Bakar Mohamad1, 2*, Kee Shyuan Loh1, Abdul Amir Hasan Kadhum1, 2

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  drab@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

The application of composite membranes for high temperature polymer electrolyte membrane fuel cell has attracted interests. Nafion-metal dioxide composite membranes are considered among the research niche. In this study, Nafion membranes and Nafion-zirconia composite membranes with 1, 3 and 5 wt. % of hydrous zirconia were prepared accordingly. All membranes were characterized by quantitative analysis techniques such as thermogravimetry analyse, diffraction scanning calorimetry and Fourier transform infrared. All composite membranes showed high glass transition temperatures and improved water retention properties, compared to the Nafion membrane. The composite membrane with 3 wt. % of zirconia showed the highest thermal resistance at 90°C.

 

Keywords:  high temperature PEM, glass transition temperature, conductivity, composite membrane, Nafion-zirconia

 

Abstrak

Penggunaan membran komposit dalam operasi sel bahanapi membran penukar proton pada suhu tinggi semakin mendapat perhatian pengkaji. Membran komposit Nafion-logam dioksida adalah antara bidang kajian dalam kumpulan ini. Bagi kajian ini, membran Nafion dan membran komposit Nafion-zirkonia dengan 1, 3, dan 5 wt. % telah disediakan. Kesemua membran dicirikan menggunakan teknik analisis kuantitatif seperti analisis termogravimetri, kalorimetri imbasan kerbedaan dan Fourier inframerah. Kesemua membran komposit mempunyai suhu peralihan kaca yang tinggi dan keupayaan penahanan air yang lebih baik berbanding membran Nafion. Membran komposit dengan 3 wt. % zirkonia menunjukkan ketahanan suhu tinggi pada suhu operasi 90°C.

 

Kata kunci:  PEM suhu tinggi, suhu peralihan kaca, konduktiviti, membran komposit, Nafion-zirkonia

 

References

1.       Raharjo, J., Muchtar, A., Daud, W. R. W., Muhamad, N. and Majlan, E. H. (2012). Pencirian fizikal dan terma komposit seramik elektrolit SDC-(Li/Na)2CO3. Sains Malaysiana, 41(1): 95 – 102.

2.       Saccà, A., Gatto, I., Carbone, A., Pedicini, R. and Passalacqua, E. (2006). ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. Journal of Power Sources, 163(1): 47 – 51.

3.       Ramani, V., Kunz, H. R., and Fenton, J. M. (2005). Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation. Electrochimica Acta, 50(5): 1181 – 1187.

4.       Dresch, M. A., Isidoro, R. A., Linardi, M., Rey, J. F. Q., Fonseca, F. C. and Santiago, E. I. (2013). Influence of sol–gel media on the properties of Nafion–SiO2 hybrid electrolytes for high performance proton exchange membrane fuel cells operating at high temperature and low humidity. Electrochimica Acta, 94(0): 353 – 359.

5.       Zhengbang, W., Tang, H. and Pan, M. (2011). Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. Journal of Membrane Science, 369(1-2): 250 – 257.

6.       Pan, J., Zhang, H., Chen, W. and Mu, P. (2010). Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process. International Journal of Hydrogen Energy, 35(7): 2796 –  2801.

7.       Hammami, R., Ahamed, Z., Charradi, K., Beji, Z., Ben Assaker, I., Ben Naceur, J., Auvity, B., Squadrito, G. and Chtourou, R. (2013). Elaboration and characterization of hybrid polymer electrolytes Nafion–TiO2 for PEMFCs. International Journal of Hydrogen Energy, 38(26): 11583 - 11590.

8.       Thiam, H. S., Daud, W. R. W., Kamarudin, S. K., Mohamad, A. B., Kadhum, A. A. H., Loh, K. S. and Majlan, E. H. (2013). Nafion/Pd-SiO2 nanofiber composite membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 38(22): 9474 – 9483.

9.       Chuah, G. K., Jaenicke, S., Cheong, S. A., and Chan, K. S. (1996). The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A: General 145(1–2): 267 – 284.

10.    Yang H. N., Lee D. C., Park S. H. and Kim W. J. (2013). Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC. Journal of Membrane Science, 443: 210 – 218.

11.    Zhai, Y., Zhang, H., Hu. J. and Yi, B. (2006). Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. Journal of Membrane Science, 280(1–2): 148 – 155.

12.    Sarkar, D., Mohapatra, Deepak, Ray, S., Bhattacharyya, S., Adak, S. and Mitra, N. (2007). Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder. Ceramics International, 33(7): 1275 – 1282.

13.    Wu, C. M., Xu, T.,  W. and Yang, W. H. (2004). Synthesis and characterizations of new negatively charged organic–inorganic hybrid materials: effect of molecular weight of sol–gel precursor. Journal of Solid State Chemistry, 177(4–5): 1660 – 1666.

14.    Iwai, Y. and Yamanishi, T. (2009). Thermal stability of ion-exchange Nafion N117CS membranes. Polymer Degradation and Stability, 94(4): 679 –  687.

15.    Gong-Yi Guo, Yu-Li Chen and Wei-Jiang Ying. (2004). Thermal, spectroscopic and X-ray diffractional analyses of zirconium hydroxides precipitated at low pH values. Materials Chemistry and Physics, 84(2–3): 308 – 314.

16.    Yu, S., Zuo, X., Bao, R., Xu, X., Wang, J. and Xu, J. (2009). Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer, 50(2): 553 – 559.

17.    Shao, Z-G., Joghee, P. and Hsing, I-M. (2004). Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. Journal of Membrane Science, 229(1–2): 43 – 51.

18.    Jalani, N. H., Dunn, K. and Datta, R. (2005). Synthesis and characterization of Nafion®-MO2 (M=Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochimica Acta, 51(3): 553 – 560.

19.    Uma, T. and Nogami, M. (2007). Fabrication and performance of Pt/C electrodes for low temperature H­2/O2 fuel cells. Journal of Membrane Science, 302(1-2): 102 – 108.

20.    Ahmad A., Isa, K. B. Md. and Osman, Z. 2011. Conductivity and structural studies of plasticized polyacrylonitrile (PAN) – lithium triflate polymer electrolyte films. Sains Malaysiana, 40 (7): 691 – 694.

21.    Wang, K., McDermid, S., Li, J., Kremliakova, N., Kozak, P., Song, C., Tang, Y., Zhang, J. and Zhang, J. (2008). Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells. Journal of Power Sources, 184(1): 99 – 103.

 




Previous                    Content                    Next