Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 288 - 295

 

 

 

POLYVINYLPYRROLIDONE AS A NEW FLUORESCENT SENSOR FOR NITRATE ION

 

(Polivinilpirolidon Sebagai Sensor Pendafluor Baru Bagi Ion Nitrat)

 

Ing Hua Tang1, Rita Sundari2, Hendrik O. Lintang3, Leny Yuliati3*

 

1Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2The Research Center of Private Universities Coordination, 13360 Jakarta, Indonesia

3Centre for Sustainable Nanomaterials,

Ibnu Sina Institute for Scientific and Industrial Research,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: leny@ibnusina.utm.my

 

 

Received: 9 December 2014; Accepted: 9 October 2015

 

 

Abstract

In this study, non-conjugated polyvinylpyrrolidone(PVP) was investigated for the first time as the potential polymeric material to sense nitrate ions by fluorescence spectroscopy. The PVP was diluted into various concentrations (3-10%) and they were used to sense the nitrate ions in different concentrations (0.1-100 mM). The PVP showed two excitation peaks at 285 and 330 nm due to the presence of C=O and N-C groups, respectively. One strong emission at 400 or 408 nm was observed with the excitation at 285 or 330 nm. The higher value of quenching constant at excitation wavelength of 285 nm indicated that C=O site was more favored for NO3- ions sensing than the N-C site. The PVP 7% gave the highest quenching constant; where the KSV value was 9.89 × 10-3 mM-1 and 2.44 × 10-3 mM-1 for excitation at 285 and 330 nm, respectively. The sensing capability was evaluated in the presence of interference ions (SO42-, HCO3-, Cl-, and OH-). It was observed that the interference ions interacted strongly with the C=O, but weakly with the N-C. Therefore, in the presence of the interference ions, the PVP would be a potential fluorescent sensor when it is excited at 330 nm.

 

Keywords: polyvinylpyrrolidone; fluorescent sensor; nitrate ions; quenching

 

Abstrak

Dalam kajian ini, polivinilpirolidon (PVP) yang bersifat bukan konjugat dikaji untuk kali pertama sebagai bahan polimer yang berpotensi untuk mengesan ion nitrat dengan spektroskopi pendaflour. PVP dicairkan kepada kepekatan yang berlainan (3-10%) dan digunakan untuk mengesan ion nitrat dalam kepekatan yang berbeza (0.1-100 mM). PVP menunjukkan dua puncak pengujaan pada 285 and 330 nm dengan kewujudan C=O dan N-C masing-masing. Satu puncak pemancaran yang tinggi pada 400 atau 408 nm diperolehi dengan pengujaan pada 285 atau 330 nm. Pemalar pelidap kejutan dengan nilai yang lebih tinggi pada puncak pengujaan 285 nm menunjukkan bahawa tapak C=O lebih cenderung untuk mengesan ion NO3- daripada tapak N-C. PVP 7% memberi pemalar pelidap kejutan yang paling tinggi, dengan nilai KSV 9.89 × 10-3 mM-1 and 2.44 × 10-3 mM-1 untuk puncak pengujaan pada 285 dan 330 nm masing-masing. Kemampuan pengesanan dinilai dengan kehadiran ion gangguan (SO42-, HCO3-, OH-, and Cl-). Hasil kajian menunjukkan bahawa ion gangguan berinteraksi kuat dengan C=O, tetapi lemah dengan N-C. Oleh itu, dengan kehadiran ion gangguan, PVP berpotensi menjadi pendafluor sensor pada tapak pengujaan 330 nm.

 

Kata kunci: polivinilpirolidon; pengesan pendaflour, ion nitrat, pelidap kejutan

 

References

1.       Bourlinos, A. B., Georgakilas, V., Zboril, R., Steriotis, T. A., Stubos, A. K. and Trapalis, C. (2009). Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the water-soluble graphenes. Solid State Communications, 149 (47-48): 2172-2176.

2.       Harsányi, G. (2000). Polymer films in sensor applications: A review of present uses and future possibilities. Emerald Insight, 20 (2): 98-105.

3.       Chen, G., Lin, Y. and Wang, J. (2006). Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta, 68 (3): 497-503.

4.       Ozaydin-Ince, G., Coclite, A. M. and Gleason, K. K. (2012). CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Report on Progress in Physics, 75 (1): 016501

5.       Fan, L-J., Zhang, Y. and Jones, W. E. (2005). Design and synthesis of fluorescence “Turn-on” chemosensors based on photoinduced electron transfer in conjugated polymers. Macromolecules, 38 (7): 2844-2849.

6.       Gangopadhyay, R. and De, A. (2000). Conducting polymer nanocomposites: a brief overview. Chemistry of Materials, 12 (3): 608-622.

7.       Heeger, A. J.  (2001). Semiconducting and metallic polymers: The fourth generation of polymeric materials. Journal of Physical Chemistry B, 105 (36): 8475-8491.

8.       Vijayakumar, N., Subramanian, E. and Padiyan, D. P.  (2012). Conducting polyaniline blends with the soft template poly(vinyl pyrrolidone) and their chemosensor application. International Journal of Polymer Materials, 61 (11): 847-863.

9.       Akinyeye R. O., Michira, I., Sekota, M., Ahmed, A. A., Tito, D., Baker, P. G. L., Brett, C. M. A., Kalaji, M. and Iwuoha, E. (2007). Electrochemical synthesis and characterization of 1,2-naphthaquinone-4-sulfonic acid doped polypyrrole. Electroanalysis, 19 (2-3): 303-309.

10.    Liu, S., Wang, L., Luo, Y., Tian, J., Li, H. and Sun, X. (2011). Polyaniline nanofibres for fluorescent nucleic acid detection.  Nanoscale, 3 (3): 967-969.

11.    Sam, M. S., Lintang, H. O., Sanagi, M. M., Lee, S. L. and Yuliati, L.  (2014). Mesoporous carbon nitride for adsorption and fluorescence sensor of n-nitrosopyrrolidone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124: 357-364.

12.    Minh, T. T., Van, B. P., Van, T. D. and Thi, H. N. (2013). The optical properties and energy transition process in nanocomposite of polyvinyl-pyrrolidone polymer and Mn-doped ZnS. Optical and Quantum Electronics, 45 (2): 147-159.

13.    Nishizawa, S., Kato, Y. and Teramae, N. (1999). Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidium receptor. Journal of American Chemical Society, 121 (40): 9463-9464.

14.    Wang, P., Gan, T., Zhang, J., Luo, J. and Zhang, S. (2013). Polyvinylpyrrolidone-enhanced electrochemical oxidation and detection of acyclovir. Journal of Molecular Liquids, 177:129-132.

15.    Thi, T. M., Tinh, L. V., Van, B. H., Ben, P. V. and Trung, V. Q. (2012). The effect of polyvinylpyrrolidone on the optical properties of the Ni-doped ZnS nanocrystalline thin films synthesized by chemical method. Journal of Nanomaterials, 2012:1-8.

16.    Zhang, J., Shen, G., Wang, W., Zhou, X. and Guo, S. (2010). Individual nanocomposite sheets of chemically reduced graphene oxide and poly(n-vinyl pyrrolidone): Preparation and humidity sensing characteristics. Journal of Materials Chemistry, 20 (48): 10824-10828.

17.    Taylor, C. J., Bain, L. A., Richardson, D. J., Spiro, S. and Russell, D. A. (2004). Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate. Analytical Biochemistry, 328 (1): 60-66.

18.    Ito, K., Takayama, Y., Makabe, N., Mitsui, R. and Hirokawa, T. (2005). Ion chromatography for determination of nitrite and nitrate in seawater using Monolithic ODS columns, Journal of Chromatography A, 1083(1-2): 63-67.

19.    Smil, V. (1997). Global population and the nitrogen cycle. Scientific American, 277: 76-81.

20.    Moorcroft, M. J., Davis, J. and Compton, R. G.  (2001). Detection and determination of nitrate and nitrite: A review. Talanta, 54 (5): 785-803.

21.    Tu, X., Gao, Y., Yue, R., Lu, Q., Zhou, Y. and Lu, Z. (2012). An amperometric nitrate sensor based on well-aligned cone-shaped polypyrrole-nanorods. Analytical Methods, 4 (12): 4182-4186.

22.    Bendikov, T. A. and Harmon, T. C. (2005). A sensitive nitrate ion-selective electrode from a pencil lead. An analytical laboratory experiment. Journal of Chemical Education, 82 (3): 439-441.

23.    Jang, A., Zou, Z., Lee, K. K., Ahn, C. H. and Bishop, P. L. (2010). Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH, and Cd(II) in Water. Talanta, 83 (1): 1-8.

24.    Adeloju, S. B. and Sohail, M. (2011). Polypyrrole-based bilayer nitrate amperometric biosensor with an integrated permselective poly-ortho-phenylenediamine layer for exclusion of inorganic interferences. Biosensors and Bioelectronics, 26 (11): 4270-4275.

25.    Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy.  Springer: New York. 3rd edition.

26.    Long, Y., Chen, H., Yang, Y., Wang, H., Yang, Y., Li, N., Li, K., Pei, J. and Liu, F. (2009). Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules, 42 (17): 6501-6509.

27.    Yang, J.-S., and Swager, T. M. (1998). Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects. Journal of American Chemical Society, 120 (46): 11864-11873.

28.    Shen, G., Wang, W., Zhou, X. and Guo, S. (2010). Individual nanocomposite sheets of chemically reduced graphene oxide and poly(n-vinyl pyrrolidone): Preparation and humidity sensing characteristics. Journal of Materials Chemistry, 20 (48): 10824-10828.

29.    Taylor, C. J., Bain, L. A., Richardson, D. J., Spiro, S. and Russell, D. A. (2004). Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate. Analytical Biochemistry, 328 (1): 60-66.

30.    Ito, K., Takayama, Y., Makabe, N., Mitsui, R. and Hirokawa, T. (2005). Ion chromatography for determination of nitrite and nitrate in seawater using Monolithic ODS columns, Journal of Chromatography A, 1083(1-2): 63-67.

31.    Smil, V. (1997). Global population and the nitrogen cycle. Scientific American, 277: 76-81.

32.    Moorcroft, M. J., Davis, J. and Compton, R. G.  (2001). Detection and determination of nitrate and nitrite: A review. Talanta, 54 (5): 785-803.

33.    Tu, X., Gao, Y., Yue, R., Lu, Q., Zhou, Y. and Lu, Z. (2012). An amperometric nitrate sensor based on well-aligned cone-shaped polypyrrole-nanorods. Analytical Methods, 4 (12): 4182-4186.

34.    Bendikov, T. A. and Harmon, T. C. (2005). A sensitive nitrate ion-selective electrode from a pencil lead. An analytical laboratory experiment. Journal of Chemical Education, 82 (3): 439-441.

35.    Jang, A., Zou, Z., Lee, K. K., Ahn, C. H. and Bishop, P. L. (2010). Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH, and Cd(II) in Water. Talanta, 83 (1): 1-8.

36.    Adeloju, S. B. and Sohail, M. (2011). Polypyrrole-based bilayer nitrate amperometric biosensor with an integrated permselective poly-ortho-phenylenediamine layer for exclusion of inorganic interferences. Biosensors and Bioelectronics, 26 (11): 4270-4275.

37.    Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy.  Springer: New York. 3rd edition.

38.    Long, Y., Chen, H., Yang, Y., Wang, H., Yang, Y., Li, N., Li, K., Pei, J. and Liu, F. (2009). Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules, 42 (17): 6501-6509.

39.    Yang, J.-S. and Swager, T. M. (1998). Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects. Journal of American Chemical Society, 120 (46): 11864-11873.

 




Previous                    Content                    Next