Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 231 - 237

 

 

 

PENGGUNAAN KAEDAH PENYINARAN MIKROGELOMBANG DALAM SINTESIS TERBITAN TIOUREA

 

(An Application of Microwave Irradiation Technique in Preparation of Thiourea Derivatives)

 

Hafizi Ahyak, Atisya Rohadi, Fatimatul Akma Awang Ngah, Bohari Yamin, Siti Aishah Hasbullah

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: aishah80@ukm.edu.my

 

 

Received: 22 January 2016; Accepted: 18 February 2016

 

 

Abstrak

Sebatian baru terbitan tiourea, 1-etil-1-(2-hidroksi-etil)-3-naftalen-1-il-tiourea (3a) dan 1-(fenil-amino)-3-naftalen-1-il-tiourea (3b) telah berjaya disintesis melalui tindak balas antara 1-naftil isotiosianat (1) dengan etilena 2-etilaminoetanol (2a) dan fenilhidrazina (2b) menggunakan kaedah penyinaran mikrogelombang dan kaedah refluks. Peratusan hasil bagi kedua-dua kaedah yang digunakan untuk sebatian 3a dan 3b masing-masing adalah 3a (refluks: 66%, mikrogelombang: 98%) dan 3b (refluks: 72%, mikrogelombang: 97%). Hasil sintesis dianalisa dengan menggunakan alat spektroskopi FT-Inframerah (FT-IM), Spektroskopi Resonan Magnetik Nuklear (RMN) dan Spektrometri Jisim. Kajian antimikrob juga dilakukan dengan menggunakan Staphylococcus aureus dan Bacillus subtillus sebagai Gram positif, Escherichia coli dan Salmonella typhimurium sebagai Gram negatif dan kulat yang digunakan adalah Aspergillus niger. Kawalan positif yang digunakan adalah streptomisin dan kanamisin, manakala kawalan negatif yang digunakan adalah DMSO. Walaubagaimanapun hasil kajian mendapati tiada perencatan yang ketara terhadap pertumbuhan bakteria dan kulat (hanya 6-7mm kawasan perencatan) menggunakan sebatian tiourea ini.

 

Kata kunci: sebatian tiourea, mikrogelombang, aktiviti antimikrob

 

Abstract

New thiourea derivatives, 1-ethyl-1-(2-hydroxy-ethyl)-3-naphthalen-1-yl-iourea (3a), 1-(phenyl-amino)-3-naphthalen-1-yl-Tiourea (3b) have been synthesized from the reaction of naphthylisothiocyanate with 2-(ethylamino)ethanol (2a) and phenylhydrazine (2b) using microwave irradiation method. The percentage yield for both method used for compound 3a and 3b, respectively 3a (reflux: 66%, microwave: 98%) and 3b (reflux: 72%, microwave: 97%).The compounds were analyzed by using Spectrometer FT-Infrared (FT-IR), Spectrometer Nuclear Magnetic Resonance (NMR) and Mass Spectrometry. Antimicrobial study was also conducted using Staphylococcus aureus and Bacillus subtillus as Gram positive, Escherichia coli and Salmonella typhimurium as Gram negative and fungi Aspergillus niger is used. The positive control used was streptomycin and kanamycin, while DMSO was used as the negative. However, this study shows no inhibition of bacteria and fungi (6-7mm of inhibition area) using these thiourea compounds.

 

Keywords: thiourea compound, microvawe, antimicrob activity

 

References

1.       Sanny, V., Suman L. J. and Bir, S. (2010). PEG-embedded Thiourea Dioxide (PEG.TUD) as a Novel Organocatalyst for the Highly Efficient Synthesis of 3,4-dihydropyrimidinones. Tetrahedron Letters 51(52): 6897 – 6900.

2.       Arslan, H., Demet, S. M., Don, V. and Gun, B. (2009). The Molecular Structure and Vibrational Spectra of N-(2,2-diphenylacetyl)-N′-(aphthalene-1yl)-thiourea by Hartree–Fock and Density Functional Methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 72(3): 561 – 571.

3.       Alan R. Katritzky, N. K., Boris V. Rogovoy, J. K. and Tao, H. (2004). Synthesis of Mono- and N, N-Disubstituted Thiourea and N-Acylthioureas. Heterocyclic: 1799 – 1805.

4.       Saeed, S., Naghmana, R., Peter G. J., Ali, M. and Hussain, R. (2010). Synthesis, Characterization and Biological Evaluation of Some Thiourea Derivatives Bearing Benzothiazole Moiety as Potential Antimicrobial and Anticancer Agents. European Journal of Medicinal Chemistry 45(4): 1323 – 1331.

5.       Kappe, C. O. and Stadler, A. (2013). Microwaves in Organic and Medicinal Chemistry, John Wiley & Sons.

6.       Hayes, B. L. (2004). Recent Advances in Microwave Assisted Synthesis. Aldrichimica Acta 37(2): 66 –76.

7.       Nguyen, Q. P. B. and Kim, T. H. (2013). Solvent- and Catalyst-free Direct Reductive Amination of Aldehydes and Ketones with Hantzsch Ester: Synthesis of Secondary and Tertiary Amines. Tetrahedron 69(24): 4938 – 4943.         

8.       Kamila, S., Kimberly, M. and Edward R. B. (2012). Microwave-assisted Hantzsch Thiazole Synthesis of N-phenyl-4-(6-phenylimidazo[2,1-b]thiazol-5-yl)thiazol-2-amines from the Reaction of 2-chloro-1-(6-phenylimidazo[2,1-b]thiazol-5-yl)ethanones and Thioureas. Tetrahedron Letters 53(37): 4921 – 4924.

9.       Gedye, R. N., Smith, F. E., Westaway, K. C., Ali, H., Baldisera, L., Laberge, L. and Rousell, J. (1986). The Use of Microwave Ovens for Rapid Organic Synthesis. Tetrahedron Letters 27(3): 279 – 282.

10.    Giguere, R. J., Bray, T. L., Duncan, S. M. and Majetich, G. (1986). Application of Commercial Microwave Ovens to Organic Synthesis. Tetrahedron Letters 27(41): 4945 – 4948.            

11.    Khansari, M. E., Wallace, K. D. and Hossain, M. D. (2013). Synthesis and Anion Recognition Studies of Dipodal Thiourea-based Sensor for Anions. Tetrahedron Letters: 438 – 440.

12.    Nguyen D. T. and Nguyen T. T. M. (2009). Synthesis of N-tetra-O-acetyl-β-D-glucopyranosyl-N'-(4',6'-diarylpyrimidin-2'-yl)thioureas. Carbohydrate Research 344: 2399 – 2405.

13.    Atisya, R., Hasbullah, S. A. Lazim, A. M., Nordin, R. (2014). Improving the synthesis of spiropyran derivatives using microwave irradiation method. Heterocycles 89(4):1017 – 1024.

14.    Mohamed, N. A. and Abd El-Ghany, N. A. (2012). Preparation and antimicrobial activity of some carboxymethyl chitosan acyl thiourea derivatives. International Journal of Biological Macromolecules 50: 1280 – 1285.

15.    Reddy, Y. T. and Reddy, P. N. (2005). Synthesis of 1-(6-methylbenzofuran-2-yl)-3-aryl/[4-(β-substitutedethoxy)phenyl]propenones as marked anti-microbial agents. Indian Journal of Chemistry 44:1079 – 1083.

16.    Ravichandran, S. and Karthikeyan, E. (2011). Microwave synthesis - A Potential Tool for Green Chemistry. International Journal of ChemTech Research 3(1): 466 – 470.

17.    Kappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition 43: 6250 – 6284.




Previous                    Content                    Next