Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 401 - 412

 

 

 

Moringa oleifera SEED DERIVATIVES AS POTENTIAL BIO-COAGULANT FOR MICROALGAE Chlorella Sp. HARVESTING

 

(Potensi Derivatif  Biji Moringa oleifera sebagai Bio-Pengental untuk Penuaian Mikroalga Chlorella sp.)

 

Azizah Endut1,2*, Siti Hajar Abdul Hamid1, Fathurrahman Lananan1, Helena Khatoon3

 

1East Coast Environmental Research Institute

2Faculty of Innovative Design and Technology

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

3School of Fishery Science and Aquaculture,

Unversiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: enazizah@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 30 November 2015

 

 

Abstract

Microalgae is an economical and potential raw material of biomass energy, which offer a wide range of commercial potential to produce valuable substances for applications in aquaculture feed, pharmaceutical purposes and biofuels production. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application.  Hence, this study was performed to investigate the potentialities of Moringa oleifera seed derivatives as an environmentally bio-coagulant to harvest microalgae Chlorella sp. biomass from the water column, which acts as a binder to coagulate particulate impurities to form larger aggregates. Results shown M. oleifera to have better biomass recovery of 122.51% as compared to 37.08% of alum at similar dosages of 10 mg·L-1. In addition, it was found that the zeta potential values of mixed microalgae-coagulant suspension shows positive correlation on the flocculation parameters. For biomass recovery, the correlation for M. oleifera protein powder showed the R2-value of 0.9565 whereas the control chemical flocculant, alum with the R2-value of 0.7920. It was evidence that M. oleifera has a great potential in efficient and economical for environmentally microalgae harvesting and the adaptation of biological harvesting technology especially for the purpose of aquaculture feed in Malaysia.

 

Keywords: Chlorella sp., coagulation-flocculation, isoelectric point, Moringa oleifera, zeta potential

 

Abstrak

Mikroalga merupakan bahan mentah yang murah dan berpotensi untuk tenaga biojisim, yang menawarkan pelbagai peluang pengkomersialan untuk menghasilkan bahan bernilai untuk aplikasi dalam makanan akuakultur, farmaseutikal dan penghasilan bahan bakar bio. Walaubagaimanapun, kekurangan kaedah yang murah, cekap dan mudah untuk penuaian mikroalga merupakan halangan untuk meningkatkan aplikasi teknologi ini dalam skala yang lebih besar. Oleh itu, kajian ini telah dijalankan untuk menyiasat potensi derivatif biji Moringa oleifera sebagai bio-penggumpal biojisim mikroalga Chlorella sp., yang bertindak sebagai pengikat untuk menggumpalkan zarah enapcemar membentuk  agregat yang lebih besar dari kolum air. Keputusan menunjukkan M. oleifera mempunyai pemulihan biojisim yang lebih baik iaitu 122.51% berbanding alum iaitu 37.08% pada dos yang sama sebanyak 10 mg·L-1. Di samping itu, nilai keupayaan zeta campuran mikroalga dan penggumpal menunjukkan kolerasi positif terhadap parameter penggumpalan. Dalam pemulihan biojisim, kolerasi bagi serbuk protein M. oleifera menunjukkan nilai R2 iaitu 0.9565 manakala penggumpal kimia kawalan, alum mempunyai nilai R2 iaitu 0.7920. Ini membuktikan bahawa M. oleifera mempunyai potensi tinggi untuk penuaian mikroalga yang berkecekapan tinggi dan murah serta penyesuaian teknologi penuaian biologi terutamanya untuk tujuan makanan akuakultur di Malaysia.

 

Kata kunci: Chlorella sp., koagulasi-flokulasi, titik isoelektrik, Moringa oleifera, keupayaan zeta

 

References

1.       Brennan, L. and P. Owende. (2010). Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2). 557 – 577.

2.       Ahmad, A. L., Yasin, N. M., Derek, C. J. C. and Lim, J. K. (2011). Optimization of Microalgae Coagulation Process using Chitosan. Chemical Engineering Journal, 173(3): 879 – 882.

3.       Zheng, H. Gao, Z. Yin, J. Tang, X. Ji, X. and Huang, H. (2012). Harvesting of Microalgae by Flocculation with Poly (γ-glutamic acid). Bioresource Technology. 112. 212 – 220.

4.       Teixeira, C. M. L. L., Kirsten, F. V. and Teixeira, P. C. N. (2012). Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. Journal of Applied Phycology. 24(3). 557 – 563.

5.       Muyibi, S. A. and Evison, L. M. (1995). Moringa Oleifera Seeds for Softening Hardwater. Water Research. 29(4): 1099 – 1104.

6.       Ndabigengesere, A. and Narasiah, K. S. (1998). Quality of Water Treated by Coagulation using Moringa Oleifera Seeds. Water Research. 32(3). 781 – 791.

7.       Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G. (2009). Freshwater and Marine Microalgae Sequestering Of CO2 At Different C And N Concentrations – Response Surface Methodology Analysis. Energy Conversion and Management. 50(2). 262 – 267.

8.       De Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S. and Rogalla, F. (2014). Evaluation of Carbon Dioxide Mass Transfer in Raceway Reactors for Microalgae Culture using Flue Gases. Bioresource Technology, 153: 307 – 314.

9.       Chen, L., Zhang, G., Wang, L., Wu, W. and Ge, J. (2014). Zeta Potential of Limestone in A Large Range of Salinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 450: 1 – 8.

10.    Moncho, A., F. Martı́nez-López and Hidalgo-Álvarez, R. (2001). Comparative Study of Theories of Conversion of Electrophoretic Mobility into ζ-potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 192(1–3). 215 – 226.

11.    Ofir, E., Oren, Y. and Adin, A. (2001). Electroflocculation: The Effect of Zeta-potential on Particle Size. Desalination, 204(1–3): 33 – 38.

12.    Kwaambwa, H. and Maikokera, R. (2007). A Fluorescence Spectroscopic Study of A Coagulating Protein Extracted from Moringa Oleifera Seeds. Colloids and surfaces B: Biointerfaces. 60(2): 213 – 220.

13.    Hunter, R. J. (2001). Measuring Zeta Potential In Concentrated Industrial Slurries. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 195(1–3): 205 – 214.

14.    Smoluchowski, M. (1967). Investigation into A Mathematical Theory of the Kinetics of Coagulation of Colloidal Solutions. Physical Chemistry 92:129 – 168.

15.    Muyibi, S. A., Abas, S. A. A., Megat Johari, M. M., and Ahmadun, N. F. R. (2003). Enhanced Coagulation Efficiency of Moringa Oleifera Seeds through Selective Oil Extraction. IIUM Engineering Journal, 4(1): 1 – 11.

16.    Beuckels, A., Depraetere, O., Vandamme, D., Foubert, I., Smolders, E. and Muylaert, K. (2013). Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass and Bioenergy, 54: 107 – 114.

17.    Harith, Z. T., Yusoff, F. M., Mohamed, M. S., Shariff, M., Din, M. and Ariff,  A. B. (2009). Effect of different flocculants on the flocculation performance of flocculation performance of microalgae, Chaetoceros calcitrans, cells. African Journal of Biotechnology, 8(21): 5971 – 5978.

18.    Oh, H. M., Lee, S. J., Park, M. H., Kim, H. S., Kim, H. C., Yoon, J. H., Kwon, G. S  and Yoon, B. D. (2001). Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnology Letters, 23(15): 1229 – 1234.

19.    Vandamme, D., Foubert, I., Meesschaert, B. and Muylaert, K. (2010). Flocculation of microalgae using cationic starch. Journal of Applied Phycology, 22(4): 525 – 530.

 




Previous                    Content                    Next