Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 365 - 372

 

 

 

IDENTIFICATION OF HAZARDOUS EVENTS FOR DRINKING WATER PRODUCTION PROCESS USING MANAGED AQUIFER RECHARGE

IN THE NAKDONG RIVER DELTA, KOREA

 

(Pengenalpastian Kejadian Berbahaya bagi Proses Pengeluaran Air Minuman Menggunakan Akuifer Terkawal Cas Semula dalam Delta Sungai Nakdong, Korea)

 

Sang-Il Lee and Hyon Wook Ji*

 

Department of Civil and Environmental Engineering,

Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, Korea

 

*Corresponding author: mousehw@naver.com

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

Various hazardous events can cause chemical, microbial or physical hazards to a water supply system. The World Health Organization (WHO) and some countries have introduced the hazardous event analysis for identifying potential events which may be harmful to the safety of drinking water. This study extends the application of the hazardous event analysis into drinking water production using managed aquifer recharge (MAR). MAR is a way of using an aquifer to secure water resources by storing freshwater for future use and pumping it whenever necessary. The entire drinking water production process is subjected to the analysis from the catchment area to the consumer. Hazardous event analysis incorporates site-specific data as well as common issues occurring in the process of drinking water production. The hazardous events are classified based on chemical, microbial or physical characteristics. Likelihood and severity values are assigned, resulting in quantitative risk by multiplying them. The study site is located at a coastal area in the delta of the Nakdong River, South Korea. The site has suffered from salt water intrusion and surface water pollution from the water upstream. Nine major hazardous events were identified out of total 114 events from 10 drinking water production processes. These major hazardous events will provide useful information on what to be done to secure the water quality produced by a new water supply method.

 

Keywords: managed aquifer recharge, hazardous event analysis, drinking water, coastal area

 

Abstrak

Pelbagai kejadian berbahaya boleh menyebabkan pencemaran kimia, mikrob atau fizikal kepada sistem bekalan air. Pertubuhan Kesihatan Sedunia (WHO) dan beberapa buah negara telah memperkenalkan analisa berbahaya untuk mengenalpasti kejadian yang berpotensi membahayakan keselamatan air minuman. Kajian ini meliputi penggunaan analisa berbahaya dalam pengeluaran air minuman menggunakan akuifer terkawal cas semula (MAR). MAR adalah satu cara menggunakan akuifer untuk mendapatkan sumber air dengan menyimpan air tawar untuk kegunaan masa depan dan mengepam bila-bila masa yang diperlukan. Keseluruhan proses pengeluaran air minuman adalah tertakluk kepada analisa dari kawasan tadahan kepada pengguna. Analisa berbahaya membekalkan maklumat khusus tempat serta isu – isu yang biasa berlaku dalam proses pengeluaran air minuman. Perkara – perkara berbahaya dikelaskan berdasarkan kimia, mikrob atau ciri – ciri fizikal. Kemungkinan dan nilai – nilai ekstrim yang diberikan, menyebabkan risiko kuantitatif dengan mendarabkan mereka. Tapak kajian terletak di kawasan pantai iaitu di delta Sungai Nakdong, Korea Selatan. Tapak tersebut terdedah kepada air masin dan pencemaran air permukaan dari hulu sungai. Sembilan kejadian berbahaya dikenalpasti daripada jumlah 114 yang berlaku dalam 10 proses pengeluaran air minuman. Kejadian berbahaya utama ini akan memberikan maklumat yang berguna mengenai apa yang perlu dilakukan untuk menjamin kualiti air yang dihasilkan dengan kaedah baru bekalan air.

 

Kata kunci: akuifer caj semula, analisas kejadian berbahaya, air minuman, kawasan pantai

 

References

1.       Dillon P. J. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13 (1): 313 – 316.

2.       Cederstrom, D. J. (1957) Geology and ground-water resources of the York-James Peninsula. Virginia, US Geological Survey: pp 237.

3.       Bakker, M. (2010). Radial Dupuit interface flow to assess the aquifer storage and recovery potential of saltwater aquifers. Hydrogeology Journal, 18 (1): 107 – 115.

4.       Zuurbier, K.G., Zaadnoordijk, W. J. and Stuyfzand, P. J. (2014). How multiple partially penetrating wells improve the freshwater recovery of coastal aquifer storage and recovery (ASR) systems: A field and modeling study. Journal of Hydrology 509 (13): 430 – 441.

5.       Bartram J., Corrales L., Davison A., Deere D., Drury D., Gordon B., Howard G., Rinehold A. and Stevens M. (2009). Water Safety Plan Manual: step-by-step risk management for drinking-water suppliers. World Health Organization, Geneva.

6.       Codex Alimentarius Commission. (1997). Hazard Analysis and Critical Control Point (HACCP) System and Guidelines for its Application. Annex to the Recommended International Code of Practice – General Principle of Food Hygiene, CAC/RCP 1-1969, Rev. 3.

7.       Havelaar A.H. (1994). Application of HACCP to drinking water supply. Food Control, 5 (3): 145 – 152.

8.       Khaniki G. R. J., Mahdavi M. and Mohebbi M. R. (2009). HACCP application for treatment of drinking water for Germi in Iran. Journal of Food Agriculture and Environment, 7 (2): 709 – 712.

9.       Tavasolifar A., Bina B., Amin M. M., Ebrahimi A. and Jalali M. (2013). Implementation of hazard analysis and critical control points in the drinking water supply system. International Journal of Environmental Health Engineering, 1 (3): 1 – 7.

10.    National Health and Medical Research Council – Natural Resource Management Ministerial Council, NHMRC – NRMMC (2011). Australian drinking water guidelines. EH52, Canberra.

11.    World Health Organization, WHO. (2012). Water safety planning for small community water supplies. World Health Organization.

12.    Deere D., Stevens M., Davison A., Helm G. and Dufour A. (2001). Water quality: guidelines, standards and health – assessment of risk and risk management for water-related infectious disease. London, World Health Organization, IWA Publishing: pp 257 – 288.

13.    Ji H.W., Lee S.-I. and Lee S. J. (2014). Hazardous event analysis for drinking water production by managed aquifer recharge. Proceedings of the 19th IAHR-APD Congress 2014, Hanoi, Vietnam.

14.    Natural Resource Management Ministerial Council – Environment Protection and Heritage Council- National Health and Medical Research Council, NRMMC-EPHC-NHMRC (2009). Australian guidelines for water recycling: managing health and environmental risks. Phase 2C: Managed Aquifer Recharge. Biotext, Canberra: pp 45 – 51.

15.    Canadian Water and Wastewater Association, CWWA. (2005). Canadian Guidance Document for Managing Drinking Water Systems.

16.    Lee J. K., Kim T. O. and Jung Y. J. (2013). Analysis of domestic water pollution accident and response management (in Korean). Journal of Wetland Research, 15 (4): 529 –534.

17.    Son H. J. (2013) Long-term variations of phytoplankton biomass and water quality in the downstream of Nakdong River (in Korean). Journal of Korea Society Environment Engineers, 35 (4): 263 – 267.

 

 




Previous                    Content                    Next