Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 351 - 357

 

 

 

MESOPOROUS SILICA ELECTROCHEMICAL SENSORS FOR THE DETECTION OF ASCORBIC ACID AND URIC ACID

 

(Sensor Elektrokimia Silika Berliang Meso untuk Pengesanan Asid Askorbik dan Asid Urik)

 

Hashazirah Mohamad Hassan*, Nurul Barakah Ab Rahman, Mohammad Noor Jalil

 

School of Chemistry and Environment,

Faculty of Applied Science,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: hashazirah@gmail.com

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

Mesoporous silica of SBA-15 and SBA-16 were successfully synthesized via the surfactant templating technique using tetraorthosilicate (TEOS) as the silica source and both surfactants, pluronic P123 and F127. Two different modified carbon paste electrodes (MCPE) were fabricated; SBA-15/MCPE and SBA-16/MCPE in compared to unmodified electrode, carbon paste electrode (CPE), for ascorbic acid (AA) and uric acid (UA) determination. Due to the unique properties of mesoporous silica materials, the MCPE fabricated exhibits greater surface enhancement effect, offers better adsorption and increases the response signals of AA and UA towards both MCPEs compared to CPE. The electrochemical behaviours of AA and UA were investigated using cyclic voltammetry. Finally, the electrochemical methods were successfully applied in detection of AA and UA.

 

Keywords: mesoporous silica, electrochemical sensor, SBA-15, SBA-16, synthesis, electrochemical methods

 

Abstrak

Mesoporus silika SBA-15 dan SBA-16 telah disintesis dengan jayanya melalui teknik templat surfaktan menggunakan tetraortosilikat (TEOS) sebagai sumber silika dan kedua-dua surfaktan, Pluronic P123 dan F127. Dua elektrod pes karbon yang dimodifikasi (MCPE) yang berbeza, SBA-15/MCPE dan SBA-16/MCPE telah dihasilkan dan dibandingkan dengan elektrod pes karbon yang tidak dimodifikasikan (CPE), untuk penentuan asid askorbik (AA) dan asid urik (UA). Dengan sifat-sifat unik bahan silika, MCPE yang telah difabrikasi mempamerkan peningkatan efek permukaan yang baik, penjerapan yang lebih bagus, dan peningkatan signal respon AA dan UA terhadap kedua-dua MCPE berbanding CPE. Perlakuan elektrokimia AA dan UA telah dikenalpasti dengan menggunakan alat voltametri berkitar. Akhirnya, kaedah elektrokimia telah berjaya diaplikasikan dalam pengesanan AA dan UA.

 

Kata kunci: silika berliang meso, sensor elektrokimia, SBA-15, SBA-16, sintesis, kaedah elektrokimia

 

References

1.       Cai, W., Lai, T., Du, H. and Ye, J. (2014). Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor. Sensors and Actuators B: Chemical, 193: 492 - 500.

2.       Xu, X., Liu, Z., Zhang, X., Duan, S., Xu, S. and Zhou, C. (2011). β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: Simultaneous determination of nitrophenol isomers. Electrochimica Acta, 58: 142 - 149.

3.       Mazloum-ardakani, M., Sheikh-mohseni, M. A., Abdollahi-alibeik, M. and Benvidi, A. (2012). Chemical electrochemical sensor for simultaneous determination of norepinephrine , paracetamol and folic acid by a nanostructured mesoporous material. Sensors and Actuators B, 172: 380 - 386.

4.       Yang, F., Xie, Q., Zhang, H., Yu, S., Zhang, X. and Shen, Y. (2015). Chemical Simultaneous determination of ascorbic acid , uric acid , tryptophan and adenine using carbon-supported NiCoO2 nanoparticles. Sensors and Actuators B, 210: 232 - 240.

5.       Arrigoni, O. and De Tullio, M. C. (2002). Ascorbic acid: Much more than just an antioxidant. Biochimica et Biophysica Acta - General Subjects, 1569(1-3): 1 - 9.

6.       Alderman, M. H. (2002). Uric acid and cardiovascular risk. Current Opinion in Pharmacology, 2(2): 126 - 130.

7.       Wu, D., Li, Y., Zhang, Y., Wang, P., Wei, Q. and Du, B. (2014). Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid , and uric acid enhanced by amino-group functionalized mesoporous Fe3O4 @ Graphene Sheets. Electrochimica Acta, 116: 244 - 249.

8.       Li, M., Guo, W., Li, H., Dai, W. and Yang, B. (2014). Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Sensors and Actuators B: Chemical, 204: 629 - 636.

9.       Mazloum-Ardakani, M., Sheikh-Mohseni, M. A., Beitollahi, H., Benvidi, A. and Naeimi, H. (2010). Electrochemical determination of vitamin C in the presence of uric acid by a novel TiO2 nanoparticles modified carbon paste electrode. Chinese Chemical Letters, 21 (12): 1471 - 1474.

10.    Xu, T.-Q., Zhang, Q.-L., Zheng, J.-N., Lv, Z.-Y., Wei, J., Wang, A.-J. and Feng, J.-J. (2014). Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochimica Acta, 115: 109 – 115.

11.    Yang, L., Liu, D., Huang, J. and You, T. (2014). Chemical Simultaneous determination of dopamine , ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B, 193: 166 – 172.

12.    Sun, D., Zhang, Y., Wang, F., Wu, K., Chen, J. and Zhou, Y. (2009). Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sensors and Actuators B: Chemical, 141 (2): 641 - 645.

13.    Zeng, Y., Xu, J. and Wu, K. (2008). Electrochemical determination of uric acid using a mesoporous SiO2-modified electrode. Microchimica Acta, 161(1–2): 249 – 253.

14.    Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H. and Sheppard, E. W. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114 (27): 10834 – 10843.

15.    Hoffmann, F., Cornelius, M., Morell, J. and Fröba, M. (2006). Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie International Edition, 45 (20): 3216 - 3251.

16.    Sun, D., Xie, X. and Zhang, H. (2010). Surface effects of mesoporous silica modified electrode and application in electrochemical detection of dopamine. Colloids and Surface B: Biointerfaces, 75 (1): 88 - 92.

17.    Wang, F., Yang, J. and Wu, K. (2009). Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Analytica Chimica Acta, 638 (1): 23 – 28.

18.    Zhao, J., Huang, W. and Zheng, X. (2009). Mesoporous silica-based electrochemical sensor for simultaneous determination of honokiol and magnolol. Journal of Appied. Electrochemistry, 39 (12): 2415 - 2419.

19.    Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F. and Ono, M. (2008). Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensors and Actuators B: Chemcial, 135 (1): 268 - 275.

20.    Sayari, A. H., Han,  B.-H. and Yang, Y. (2004). Simple synthesis route to monodispersed SBA-15 silica rods. Journal of the American Chemical Sociecty., 126 (44): 14348 - 14349.

21.    Sun, R.-H. and Jun, W. (2007). The growth mechanism of continuous cubic mesoporous SBA-16 film with a large area of highly ordered pores. Nanotechnology, 18(18): 185705.

22.    Boissiere, C., Grosso, D., Lepoutre, S., Nicole, L., Bruneau, A. B. and Sanchez, C. (2005). Porosity and mechanical properties of mesoporous thin films assessed by environmental ellopsometric porosimetry. Langmuir, 21 (26): 12362 - 12371.

23.    Fathirad, F., Afzali, D.,  Mostafavi, A., Shamspur, T. and Fozooni, S. (2013). Fabrication of a new carbon paste electrode modified with multi-walled carbon nanotube for stripping voltammetric determination of bismuth(III). Electrochimica Acta, 103: 206 - 210.

24.    Brodie-Linder, N., Dosseh, G., Alba-Simonesco, C.,  Audonnet, F. and Impéror-Clerc, M. (2008). SBA-15 synthesis: Are there lasting effects of temperature change within the first 10min of TEOS polymerization? Materials Chemistry and Physics, 108 (1): 73 - 81.

25.    Dos Santos, S. M. L., Nogueira, M. De Souza Gama, J. D. F. Lima, Da Silva Júnior, I. J. and De Azevedo. D. C. S. (2013). Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules. Microporous and Mesoporous Materials, 180: 284 - 292.

26.    Lin, C.-L., Pang, Y.-S., Chao, M.-C., Chen, B-C., Lin, H. P., Tang, C. Y. and Lin, C.-Y. (2008). Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants. Journal of  Physics and Chemistry of Solids, 69 (23): 415 - 419.

27.    Shah, A. T., Ahmad, S., Khan, M. F., Shahzad, K., Tabassum, S. and Mujahid, A. (2014). In situ synthesis of copper nanoparticles on SBA-16 Silica Spheres. Arabian Journal of Chemistry (In Press): 2 - 6.

28.    Wang, L., Fan, J., Tian, B., Yang, H., Yu, C., Tu, B. and Zhao, D. (2004). Synthesis and characterization of small pore thick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains. Microporous and Mesoporous Materials, 67 (23): 135 – 141.

29.    Stevens, W. J. J., Mertens, M., Mullens, S., Thijs, I., Van Tendeloo, G., Cool, P. and Vansant, E. F. (2006). Formation mechanism of SBA-16 spheres and control of their dimensions. Microporous and Mesoporous Materials, 93 (1-3): 119 - 124.

 




Previous                    Content                    Next