Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 197 - 204

 

 

 

DITHIZONE MODIFIED SILVER ELECTRODE FOR THE DETERMINATION OF METAL IONS IN AQUEOUS SOLUTION

 

(Elektrod Perak Diubahsuai Ditizon bagi Penentuan Ion Logam dalam Larutan Akues)

 

Mohamad Aiman Firdaus Othman, Azrilawani Ahmad @ Othman, Hafiza Mohamed Zuki*

 

School of Marine Science and Environment,

Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia

 

*Corresponding author: hafiza@umt.edu.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

Dithizone-PVC membrane was constructed and utilized as an ionophore reagent material for chemically modified silver (Ag) electrode. The modified electrode was characterized using cyclic voltammetry where the electrochemical behaviour of dithizone modified Ag electrode surface was investigated in the range of -0.6 to +0.6 V with 0.1 M KCl as supporting electrolyte. Comparative studies towards metal ions Cu2+, Fe2+ and Pb2+ exhibited good responses for redox reactions with linear relationship between peak currents and concentrations. The correlation coefficients obtained were 0.9800, 0.9944 and 0.9949 while the evaluated limits of detection were 8.3 x 10-7 M, 4.7 x 10-7 M and 7.6 x 10-7 M respectively.

 

Keywords: PVC membrane, dithizone (1,5-diphenylthiocarbazone), cyclic voltammetry, redox reactions

 

Abstrak

Membran PVC-Ditizon telah dibina dan digunakan sebagai bahan reagen ionofora bagi elektrod perak (Ag) yang diubahsuai secara kimia. Elektrod yang diubahsuai telah dicirikan menggunakan voltametri berkitar di mana sifat elektrokimia bagi ditizon yang diubahsuai pada permukaan elektrod Ag telah dikaji di dalam julat -0.6 ke +0.6 V dengan 0.1 M KCl sebagai elektrolit sokongan. Kajian perbandingan terhadap ion-ion logam Cu2+, Fe2+ dan Pb2+ mempamerkan respon yang baik bagi tindak balas redoks dengan hubungan linear antara arus-arus puncak dan kepekatan. Pekali korelasi yang diperolehi adalah 0.9800, 0.9944 dan 0.9949 manakala had pengesanan yang diukur adalah 8.3 x 10-7 M, 4.7 x 10-7 M dan 7.6 x 10-7 M masing-masing.

 

Kata kunci: membran PVC, ditizon (1,5-difeniltiokarbazon), voltametri berkitar, tindakbalas redoks

 

References

1.       Schwartz, M. S., Benci, J. L., Selote, D. S., Sharma, A. K., Chen, A. G. Y.,  Dang, H., Fares, H., Vatamaniuk, O. K. (2010). Detoxification of multiple heavy metals by a half-molecule ABC transporter, HMT-1, and coelomocytes of Caenorhabditis elegans. PLoS ONE 5 (3): e9564.

2.       Reeve, R. N. (2002). Introduction to Environmental analysis. (1st ed.) John Wiley & Sons Ltd.

3.       Zejli, H., Sharrock, P., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodriguez, I. and Temsamani, K. R. (2005). Voltammetric determination of trace mercury at a sonogel-carbon electrode modified with poly-3-methylthiophene. Talanta 68: 79 – 85.

4.       Pournaghi-Azar, M. H. and Dastangoo, H. (2003). Electrochemical behavior of a novel palladium pentacyanonitrosylferrate modified aluminum electrode. Electrochimica Acta 48: 1797 – 1806.

5.       Prieto-Simon, B. and Fabregas, E. (2004). Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosensor Bioelectron 19: 1131 – 1138.

6.       Faucheux, N., Schweiss, R., Lutzow, K., Werner, C. and Groth, T. (2004). Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25: 2721 –2730.

7.       Wang, H., Xu, G. and Dong, S. (2001). Electrochemistry and electrochemiluminescence of stable (2,2’bipyridyl)ruthenium(II) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode. Talanta 55: 61 – 67.

8.       Kan, J., Pan, X. and Chen, C. (2004). Polyaniline-uricase biosensor prepared with template process. Biosensor Bioelectron 19: 1635 – 1640.

9.       Calvo-Marzal, P., Torres, K., Hoehr, N., Neto, G. and Kubota, L. (2004). Determination of reduced gluthathione using an amperometric carbon paste electrode chemically modified with TTF-TCNQ. Sensor Actuat B 100: 337 – 344.

10.    Toma, H. E., Zamarion, V. M., Toma, S. H. and Araki, K. (2010). The coordination chemistry at gold nanoparticles. Journal Brazilian Chemical Society 21 (7): 1158 – 1176.

11.    Tomcsányim, L. (1974). Investigations on the redox character of dithizone by voltammetric methods. Part I. The reduction of dithizone in aqueous solutions. Analytical Chimica Acta 70: 411 – 416.

12.    Karel, G. V. E. and Jannie, C. S. (2010). Chemical and electrochemical oxidation and reduction of dithizone. Polyhedron 29: 1727 – 1733.

13.    Jeanne, E. P., and Richard, P. B. (1981). Dithizone adsorption at metal electrodes. Electrochemical characterization of dithizone anion at silver electrode. Journal of Electroanalytical Chemistry 132: 291 – 309.

14.    Kalcher, K. and Fresenius, Z. (1986). Voltammetrisches Verhalten von Gold an einer Dithizon-modifizierten Kohlenpasteelectrode. Anaytical Chemistry 325: 181 – 185.

15.    Labuda, J. and Plaskon, V. (1990). Determination of mercury ions on a diphenylcarbazone bulk modified graphite electrode. Analytica Chimica Acta 228: 259 – 263.

16.    Abbaspour, A., and Izadyar, A. (2001). Highly selective electrode for Nickel (II) ion based on 1,5-diphenylthiocarbazone (dithizone). Microchemical Journal 69: 7 – 11.

17.    Singh, A. K., and Saxena, P. (2007). A PVC-based membrane electrode for nickel (II) ions incorporating a tetraazamacrocycle as an ionophore. Sensors and Actuators B 121: 349 – 355.

18.    Heineman, W. R., Wieck, H. J. and Yacynych, A. M. (1980). Polymer Film Chemically Modified Electrode as a Potentiometric Sensor. Analytical Chemistry. Analytical Chemistry 52: 345 – 346.

19.    Momma, T., Komaba, S., Yamamoto, M., Osaka, S. and Yamauchi, S. (1995). All-solid potassium-selective electrode using double-layer film of polypyrrole/polyanion composite and plasticized poly(vinyl chloride) containing valinomycin. Sensors and Actuators B24-B25: 724 – 728.

20.    Abbaspour, A., Refahi, M., Khalafi-Nezhad, A., Rad, N. S. and Behrouz, S. (2010). Carbon composite-PVC based membrane coated platinum electrode for chromium determination. Journal of Hazardous Materials 184: 20 – 25.

21.    Eliane, R. D. S., Edmar, P. M., Elizabeth, N. F., Jiujun, Z. and Aldalea, L. B. M. (2006). Graphite electrodes modified by 8-hydroxyquinolines and its application for the determination of copper in trace levels. Journal Brazilian Chemical Society 17: 177 – 183.

22.    Alice, D. L. (2011). Electrochemical analysis supported by macro and microelectrode array. Durham University, Durham, United kingdom.

23.    Somerset, V., Leaner, J., Mason, R., Iwuoha, E. and Morrin, A. (2010). Development and application of poly(2,2-dithiodianiline) (PDTDA) coated screen-printed carbon electrode in inorganic mercury determination. Electrochemical Acta 55: 4240 – 4246.

24.    Daud, N., Yusof, N. A., Nor, S. M. M. (2013). Electrochemical characteristic of biotinyl somatostation-14/Nafion modified gold electrode in development of sensor for determination of Hg(II). International Journal Electrochemical Science 8: 10086 – 10099.

25.    Afkhami, A., Felehgari, F. S. and Madrakian, T. (2013). Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples. Electrochemical Acta 103: 125 – 133.

26.    Zaky, A. M., Abd El-Rehim, S. S. and Mohamed, B. M. (2006). Effect of addition of sulphide ions on the electrochemical behavior and corrosion of Cu-Ag Alloys in alkaline solutions. International Journal Electrochemical Science 1: 17 – 31.

27.    Riyanto., Othman, M, R. and Salimon, J. (2007). Analysis of ethanol using copper and nickel sheet electrodes by cyclic voltammetry. Malaysian Journal of Analytical Sciences 11 (2): 379 – 387.




Previous                    Content                    Next