Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 171 - 178

 

 

 

MODIFICATION OF TITANIUM DIOXIDE NANOPARTICLES WITH COPPER OXIDE CO-CATALYST FOR PHOTOCATALYTIC DEGRADATION OF 2,4-DICHLOROPHENOXYACETIC ACID

 

(Nanozarah Titanium Dioksida Terubahsuai Ko–Mangkin Kobalt Oksida untuk Degradasi

Asid 2,4-diklorofenoksiasetik)

 

Leny Yuliati1*, Wai Ruu Siah1, Nur Azmina Roslan2, Mustaffa Shamsuddin2, Hendrik O. Lintang1

 

1Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

2Department of Chemistry, Faculty of Science

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: leny@ibnusina.utm.my

 

 

Received: 9 December 2014; Accepted: 3 January 2016

 

 

Abstract

2,4-dichlorophenoxyacetic acid (2,4-D) is a common herbicide that has been used widely. Due to its excessive usage, the 2,4-D herbicides can cause contamination over agricultural land and water bodies. In the present work, a simple impregnation method was used to modify the commercial titanium dioxide (P25 TiO2) nanoparticles with the copper oxide. The prepared samples were characterized by X-ray Diffraction (XRD), reflectance UV-visible and fluorescence spectroscopies. It was observed that the incorporation of copper oxide did not significantly affect the crystal structure of P25 TiO2. On the other hand, the presence of copper oxide was confirmed by reflectance UV-visible and fluorescence spectroscopies. The activity of the prepared sample was evaluated for photocatalytic removal of the 2,4-D. The photocatalytic activity of the TiO2 increased with the increase of copper oxide loading up to 0.5 mol%. Unfortunately, the higher loading amount of copper oxide resulted in the lower photocatalytic activity. This study suggested that the higher photocatalytic activities obtained on the low loading samples were due to the lower electron-hole recombination.

 

Keywords: P25 TiO2, copper oxide, impregnation, photocatalyst, 2,4-D herbicide

 

Abstrak

Asid 2,4-diklorofenoksiasetik (2,4-D) adalah herbisid biasa yang telah digunakan secara meluas. Oleh kerana penggunaan yang berlebihan, herbisid 2,4-D boleh menyebabkan pencemaran di kawasan pertanian dan sistem air.  Dalam kajian ini, satu kaedah pengisitepuan yang mudah telah digunakan untuk mengubahsuai nanozarah titanium dioksida komersial (P25 TiO2) dengan kuprum oksida. Sampel yang disediakan telah dicirikan dengan XRD, spektroskopi pantulan serakan ultra lembayung-cahaya nampak, dan spektroskopi pendarfluor. Didapati pengubahsuaian P25 TiO2 dengan kuprum oksida tidak memberi kesan yang signifikan kepada struktur kristal P25 TiO2. Sebaliknya, kehadiran kuprum oksida telah disahkan oleh spektroskopi pantulan serakan ultra lembayung-cahaya nampak. Aktiviti sampel telah diuji untuk penyingkiran 2,4-D. Aktiviti fotomangkin TiO2 meningkat dengan peningkatan jumlah kuprum oksida kepada 0.5 mol%. Malangnya, jumlah kuprum oksida yang lebih tinggi menghasilkan aktiviti fotomangkin yang lebih rendah. Kajian ini mencadangkan bahawa aktiviti fotomangkin yang tinggi diperolehi pada sampel loading rendah adalah disebabkan oleh penggabungan elektron-lubang yang lebih rendah

 

Kata kunci: P25 TiO2, kuprum oksida, pengisitepuan, fotomangkin, 2,4-D herbisid

 

References

1.          Burns, C. J., and Swaen, G. M. H. (2012). Review of 2,4-Dichlorophenoxyacetic Acid (2,4-D)  Biomonitoring and Epidemiology. Critical Reviews in Toxicology, 42 (9): 768 - 786.

2.          Legrouri, A., Lakraimi, M., Barroug, A., De Roy, A. and Besse, J. (2005). Removal of the Herbicide  2,4-Dichlo-rophenoxyacetate from Water to Zinc–Aluminium–Chloride Layered Double Hydroxides,   Water Research, 39 (15): 3441 - 3448.

3.          Chao, Y.-F.,  Chen, P.-C. and  Wang,  S.-L. (2008).  Adsorption  of  2,4-D  on  Mg/Al-NO3  Layered   Double Hydroxides with Varying Layer Charge Density, Applied Clay Science, 40 (1-4): 193 - 200.

4.          Chao, Y. F., Lee,  J. J. and  Wang, S. L. (2009). Preferential Adsorption of  2,4-Dichlorophenoxyacetate  from Associated  Binary-Solute  Aqueous  Systems  by  Mg/Al-NO3  Layered  Double  Hydroxides with Different Nitrate Orientations,       Journal of Hazardous Materials, 165 (1-3): 846 - 852.

5.          Nejati, K., Davary, S. and Saati, M. (2013).  Study of  2,4-Dichlorophenoxyacetic Acid  (2,4-D) Removal by Cu-Fe-Layered Double Hydroxide from Aqueous Solution. Applied Surface Science,  280: 67-73.

6.          Momcilovic,  M. Z., Randelovic, M. S., Zarubica,  A. R., Onjia,  A. E., Kokunešoski,  M.,  and  Matovic, B. Z. (2013).  SBA-15 Templated  Mesoporous  Carbons for 2,4-Dichlorophenoxyacetic  Acid  Removal.  Chemical Engineering Journal, 220: 276 - 283.

7.          Zhang, J. L., Cao, Z.P., Zhang, H.W., Zhao, L. M., Sun, X. D. and Mei, F. (2013). Degradation Characteristics of 2,4-Dichlorophenoxyacetic Acid in Electro-Biological System. Journal of Hazardous Materials, 262: 137 - 142.

8.          Kwan, C. Y. and  Chu, W. (2004).   A  Study of  the  Reaction   Mechanisms  of  the  Degradation  of  2,4-Dichlorophenoxyacetic Acid by Oxalate-Mediated Photooxidation. Water Research, 38 (19): 4213 4221.

9.          Pei, C. C. and  Chu, W. (2013). The Photocatalyic  Degradation and Modeling  of  2,4-Dichlorophenoxyacetic Acid by Bismuth Tungstate/Peroxide. Chemical Engineering Journal, 223: 665 - 669.

10.       Lee, H., Park, S.H., Park,Y.-K., Kim, S.-J., Seo, S.-G., Ki, S.J. and Jung, S.-C. (2014). Photocatalytic Reactions of 2,4-Dichlorophenoxyacetic Acid using a Microwave-Assisted Photocatalysis System. Chemical Engineering Journal. 278: 259 - 264.

11.       Vega, A. A., Imoberdorf, G. E. and Mohseni, M. (2011). Photocatalytic Degradation of   2,4-Dichlorophenoxyacetic Acid in a Fluidized Bed Photoreactor with Composite Template-Free TiO2 Photocatalyst. Applied Catalysis A: General, 405 (1-2): 120 -128.

12.       Liu, X., Tang, Y., Luo, S., Wang, Y., Zhang, X., Chen, Y. and Liu, C. (2013).  Reduced Graphene Oxide  and CuInS2 Co-Decorated TiO2 Nanotube Arrays for  Efficient Removal of Herbicide  2,4-Dichlorophenoxyacetic Acid from Water. Journal of Photochemistry and Photobiology A: Chemistry, 262: 22 - 27.

13.       Tang, Y., Luo, S., Teng, Y., Liu, C., Xu, X., Zhang, X. and  Chen, L. (2012).  Efficient  Removal of Herbicide 2,4-Dichlorophenoxyacetic Acid from Water using Ag/Reduced Graphene Oxide Co-Decorated TiO2  Nanotube Arrays. Journal of Hazardous Materials, 241-242: 323 - 330.

14.       Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J. and Gernjak, W. (2009). Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catalysis Today, 147 (1): 1-59.

15.       Teh, C. M. and  Mohamed, A. R.  (2011).  Roles of  Titanium  Dioxide   and  Ion-doped  Titanium Dioxide on Photocatalytic Degradation of  Organic Pollutants (Phenolic Compounds and Dyes)  in  Aqueous Solutions: A Review. Journal of Alloys and Compounds, 509 (5): 1648 - 1660.

16.       Choi, W., Termin, A. and Hoffmann, M. R. (1994). The Role of  Metal Ion Dopants  in  Quantum-Sized TiO2: Correlation  etween  Photoreactivity  and  Charge  Carrier Recombination Dynamics.  The Journal of Physical Chemistry, 98 (51): 13669 - 13679.

17.       Di Paola, A., Marcì, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S. and Ohtani, B. (2001).   Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions:  Characterization  and Photocatalytic  Activity  for the  Degradation  of 4-Nitrophenol. The Journal of Physical Chemistry B, 106 (3): 637 - 645.

18.       Dvoranová, D., Brezová, V., Mazúr, M. and  Malati, M. A. (2002).  Investigations of   Metal-Doped Titanium Dioxide Photocatalysts. Applied Catalysis B: Environmental, 37 (2): 91-105.

19.       Chiang, K., Amal, R. and Tran, T. (2002).  Photocatalytic  Degradation of  Cyanide  using  Titanium Dioxide Modified with Copper Oxide. Advances in Environmental Research, 6 (4): 471 - 485.

20.       Tseng, I.-H., Chang, W.-C. and Wu, J. C. S. (2002). Photoreduction of CO2 Using Sol–Gel Derived Titania     and Titania-Supported Copper Catalysts. Applied Catalysis B: Environmental, 37 (1): 37 - 48.

21.       Slamet, Nasution, H.W., Purnama, E., Kosela, S. and Gunlazuardi, J. (2005). Photocatalytic Reduction of CO2 on Copper-Doped Titania Catalysts Prepared by Improved-Impregnation Method. Catalysis Communication, 6 (5): 313 319.




Previous                    Content                    Next