Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1405 - 1414

 

 

 

ASSESSMENT ON BACTERIA IN THE HEAVY METAL BIOREMEDIATION

 

(Penilaian ke atas Bakteria dalam Bioremediasi Logam Berat)

 

Mohamad Romizan Osman1,2, Azman Azid2*, Kamaruzzaman Yunus1, Ahmad Dasuki Mustafa2,

Mohammad Azizi Amran2, Fazureen Azaman2, Zarizal Suhaili3, Yahya Abu Bakar1,

Syahrir Farihan Mohamed Zainuddin1

 

1Kulliyyah of Science,

International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

2East Coast Environmental Research Institute (ESERI),

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

3Faculty of Bioresources and Food Industry,

Universiti Sultan Zainal Abidin, Tembila Campus, 222000 Besut, Terengganu, Malaysia

 

*Corresponding author: azmanazid@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

The aim of this study was to identify and verify the potential bacteria as the bioremediation agent. It involved bacteria isolation, identification through Gram staining, analytical profile index (API) test and determine bioremediation activities by using inductively coupled plasma mass spectrometry (ICPMS). The soil and water sample were collected from downstream of Galing River, Kuantan Malaysia. Based on phenotypic identification and biochemical analysis, the bacteria present at the vicinity area are possibility of Myroides spp. and Micrococcus spp. These bacteria were proven as bioremediation agent based on the ICPMS result. The result 1 ppm of Zink (Zn), Lead (Pb), Arsenic (As), Selenium (Se), Cadmium (Cd), Manganese (Mn), and Indium (In) dwindled after the bacteria inoculated and incubated for seven days in mixture of base salt media (BSM) with the heavy metal elements. Therefore, this proves that the bacteria which are present at downstream of Galing River, Kuantan Malaysia are significant to help us in the bioremediation activity to decrease the heavy metal pollution in the environment.

 

Keywords:  bioremediation, heavy metal, bacteria, analytical profile index, inductively coupled plasma mass spectrometry

 

Abstrak

Kajian ini bertujuan untuk mengenal pasti dan mengesahkan bakteria yang berpotensi sebagai agen bioremediasi. Ia melibatkan pengasingan dan pengenalan bakteria melalui ujian pewarnaan Gram, ujian indeks profil analisis (API) dan menentukan aktiviti bioremediasi dengan menggunakan spektometri jisim gadingan plasma teraruh (ICPMS). Sampel tanah dan air telah diambil dari hilir Sungai Galing, Kuantan Malaysia. Berdasarkan ujian pengasingan, pewarnaan dan API, bakteria yang hadir di kawasan sekitar adalah berkemungkinan Myroides spp. dan Micrococcus spp. Bakteria ini telah terbukti sebagai ejen bioremediasi berdasarkan keputusan ICPMS dimana 1 ppm Zink (Zn), Plumbum (Pb), Arsenik (As), Selenium (Se), Kadmium (Cd), Mangan (Mn), dan Indium (In) berkurangan selepas bakteria  disuntik dan dieram selama tujuh hari dalam campuran media garam asas (MGA) dengan unsur-unsur logam berat. Oleh itu, ini membuktikan bahawa bakteria yang hadir di hilir Sungai Galing, Kuantan, Malaysia adalah penting untuk membantu kita dalam bioremediasi aktiviti untuk mengurangkan pencemaran logam berat di dalam alam sekitar.

 

Kata kunci:  bioremediasi, logam berat, bakteria, indeks profil analisis, spektometri jisim gadingan plasma teraruh

 

References

1.        Hogan, M.C. (2014). Bacteria. Available at: http://www.eoearth.org/view/article/150368/. Accessed November 2014.

2.        Ragini, G. and Pankaj, B. (2012). Cynobacteria: A comprehensive review. International Research Journal of Pharmacy 3(2): 1-5.

3.        Mandal, A. K., Sarma, P. M., Singh, B., Jeyaseelan, C. P. Channashettar, V. A. Lal, B. and Datta, J. (2012) Bioremediation: An Environment Friendly Sustainable Biotechnological Solution for Remediation of Petroleum Hydrocarbon Contaminated Waste. ARPN Journal of Science and Technology 2: 1-12.

4.        Alavijeh, P. K., Halimoon, N., Pauzi, Z., Johari, W. L. W., Karimi, B. (2014). Crude oil biodegradation using isolated bacteria from polluted soil: pp 127-129.

5.        Naik, M. M., Pandey, A. and Dubey, S. K (2012). Bioremediation of Metals Mediated by Marine Bacteria. Microorganisms in Environmental Management Microbes and Environment: pp 665-682.

6.        Sharma, S. (2012). Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life Science 2 (2): 1-12.

7.        Hamza, U. D., Mohammed, I. A. and Sale, A. (2012). Potentials of bacterial isolates in bioremediation of petroleum refinery wastewater. Journal of Applied Phytotechnology in Environmental Sanitation 1(3):131-138.

8.        Poornima, K., Karthik, L., Swadhini, S. P., Mythili, S., and Sathiavelu, A. (2010). Degradation of Chromium by Using a Novel Strains of Pseudomonas Species. Journal of Microbial and Biochemical Technology, 2: 95-99.

9.        Igeno, I.M., Orovengua, E., Guijo, I.M., Merchán, F., Quesada and Blasco, R. (2007). Biodegradation of cyanide-containing wastes by Pseudomonas pseudoalcaligenes CECT5344. Available at:  http://www.formatex.org/microbio/pdf/Pages100-107.pdf. Accessed March, 2015.

10.     Vidali, M. (2001). Bioremediation. An overview. Available at: http://www.eolss.net/sample-chapters/c17/e6-58-09-13.pdf. Accessed March 2015.

11.     Salem, I. B., Sghaier, H., Trifi1, H., Héni, S., Khwaldia, K., Saidi, M. and Landoulsi, A. (2012). Isolation and characterization of a novel Micrococcus strain for bioremediation of strontium in radioactive residues. African Journal of Microbiology Research 6(4), pp. 851-858.

12.     Bahig A. E., Aly E. A., Khaled A. A. and Amel K. A (2008). Isolation, Characterization and Application of Bacterial Population from Agricultural Soil at Sohag Province, Egypt. Malaysian Journal of Microbiology 4(2): 42- 50.

13.     Perriello. (2005). Remediation of Metal Contaminants with Hydrocarbon Utilizing Bacteria. United States Patents: 1-19.

14.     Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I. and Okuyama, H. (2004). Isolation and Characterization of Novel Strains of Pseudomonas aeruginosa and Serratia marcescens Possessing High Efficiency to Degrade Gasoline, Kerosene, Diesel Oil, and Lubricating Oil. Journal of Current Microbiology 49: pp. 415–422

15.     Ahemed, M. and Malik, A. (2011). Bioaccumulation of Heavy Metal by zinc Resistant Bacteria Isolated from Agricultural Soils Irrigated with Wastewater. Bacteriology Journal 2: 12-21.

16.     Basha, S.A. and Rajaganesh, K. (2014). Microbial Bioremediation of Heavy Metals from Textile Industry Dye Effluents using Isolated Bacterial Strains. International Journal of Current Microbiology and Applied Science 3(5): 785-794.

17.     Garbisu, C. and Alkorta, I. (2003). Basic concepts on heavy metal soil bioremediation, The European Journal of Mineral Processing and Environmental Protection 3 (1): pp. 58-66.

18.     Dash, H.R., Mangwani, N., Chakraborty, J., Kumari, S. and Das, S. (2012). Marine bacteria: potential candidates for enhanced bioremediation. Applied Microbiology Biotechnology 97(2):561-71.

19.     Mangum, S.J. (2009). Field Application Report: Optical Emission Spectrometry and ICP-Mass Spectrometry.1-3. Available at:http://www.perkinelmer.com/content/applicationnotes/app_microwavedigestionmultiwave.pdf. Accessed March 2015.

20.     Kamaruzzaman, B.Y., Eina, Z., John, B.A., and Jalal, K.C.A. (2011). Heavy Metal Accumulation Comercially Important Fishes of South West Malaysian Coast. Research Journal of Environment 5(6): 595-602.

21.     Sarojam, P. (2010). Application Note: ICP-Optical Emission Spectroscopy.Available at: http://www.perkinelmer.com/cmsresources/images/4474318app_tracemetalsindrinkingwaterbyoptima7000.pdf. Accessed March, 2015.

22.     Popovic, N.T., Rakovac, R.C. and Perovic, I.S.(2007). Commercial phenotypic tests (API 20E) in diagnosis.of fish bacteria: A review 52 (2): 49–53.

23.     Benito, M. J.  Aguez, M. M., Coardoba, M. G., Aranda, E., and Coardoba, J. J. (2000). Rapid differentiation of Staphylococcus aureus from staphylococcal species by arbitrarily primed-polymerase chain reaction. Letters in Applied Microbiology 31(5):368-373.

24.     Benedetti, P.,   Rassu, M.,  Pavan, G.,   Sefton, A. and Pellizzer, G. (2011). Septic shock, pneumonia, and soft tissue infection due to Myroides odoratimimus: report of a case and review of Myroides infections 39: pp 161-165.

25.     Xiao, Z., Zhu, X., Xi, L., Hou, X., Fang, L. and Lu, J.R. (2014). Biodegradation of C5-C 8 fatty acids and production of aroma volatiles by Myroides sp. ZB35 isolated from activated sludge. Journal of Microbiology 52(5):407-12.

26.     Francis, A. J. (2005).Microbial Transformations of Radionuclides and Environmental Restoration through Bioremediation. Available at: http://www.bnl.gov/isd/documents/32628.pdf. Accessed April 2015.

27.     Santhini, K., Myla, J., Sajani, S., and Usharani, G. (2009). Screening of Micrococcus Sp from Oil Contaminated Soil with Reference to Bioremediation. Botany Research International 2 (4): 248-252.

28.     Ministry of Health. (2010). National Guidelines for Raw Drinking Water Quality. Available at: http://kmam.moh.gov.my/public-user/drinking-water-quality-standard.html. Accessed January 2015.




Previous                    Content                    Next