Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1223 - 1228

 

 

 

REDUCTION OF GRAPHENE OXIDE TO GRAPHENE BY USING GAMMA IRRADIATION

 

(Penurunan Grafin Oksida kepada Grafin Menggunakan Sinar Gama)

Shamellia Sharin1, Irman Abdul Rahman1,2*, Ainee Fatimah Ahmad1, Hur Munawar Kabir Mohd1,

Faizal Mohamed1,2, Shahidan Radiman1,2, Muhamad Samudi Yasir1,2, Sukiman Sarmani1,2,

Muhammad Taqiyuddin Mawardi Ayob1, Intan Syakeela Ahmad Bastamam1

 

1School of Applied Physics

2Nuclear Technology Research Centre

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: irman@ukm.edu.my 

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

This research aims to gauge the ability of gamma radiation to induce the reduction of graphene oxide to graphene. Graphene oxide powders were dispersed into a mixture of alcohol and deionized water, and the mixture was then irradiated with a 60Co source using a GammaCell 220 Excel irradiator at absorbed doses of 0, 5, 15, 20 and 35 kGy. According to characterization using Fourier Transformed Infrared Spectroscopy (FTIR), it can be seen that almost every oxygen-containing functional group has been removed after irradiation of the graphene oxide mixture. Reduction of graphene oxide was also proven from the characterization using UV-Vis Spectroscopy, in which the wavelength of graphene oxide at 237 nm was red-shifted to 277 nm after being irradiated and the peak at 292 nm, (indicating the carboxyl group) disappears in the UV-Vis spectrum of reduced graphene oxide. Morphology of graphene oxide also changed from a smooth and flat surface to crumpled. The ratio of carbon/oxygen in the graphene oxide was lower than the carbon/oxygen of reduced graphene oxide. At the end of the experiment, it can be deduced that graphene oxide underwent reduction, characterized before and after irradiation using Emission Scanned Electron Microscopy and Energy Dispersive X-ray, Fourier Transformed Infrared Spectroscopy and UV-Vis Spectroscopy. Therefore, we postulate that the irradiation technique that induces reduction, can be used to obtain reduced graphene oxide from graphene oxide.

 

Keywords: graphene, graphene oxide, gamma radiation, FTIR, FESEM-EDX, UV-Vis

 

Abstrak

Kajian ini dijalankan untuk menguji kebolehan sinar gama untuk mengaruh penurunan daripada grafin oksida kepada grafin. Serbuk grafin oksida yang dilarutkan dalam campuran alkohol dan air ternyah ion disinarkan dengan punca sinaran 60Co menggunakan penyinar GammaCell 220 Excel pada dos serapan 0, 5, 15, 20 dan 35 kGy. Berdasarkan pencirian yang dibuat menggunakan Spektroskopi Infra Merah Transformasi Fourier (FT-IR), didapati hampir kesemua kumpulan berfungsi yang mempunyai ikatan dengan oksigen berjaya disingkirkan selepas campuran grafin oksida disinarkan. Penurunan grafin oksida turut dibuktikan melalui pencirian Spektroskopi Penyerapan Ultralembayung-cahaya Nampak, yang mana panjang gelombang grafin oksida iaitu pada 237 nm beralih kepada 277 nm selepas disinarkan dengan sinar gama dan puncak pada 292 nm mewakili kumpulan berfungsi karboksil hilang pada spektrum grafin oksida terturun. Morfologi grafin oksida bertukar daripada rata dan licin kepada berkedut. Nisbah karbon/oksigen bagi grafin oksida adalah lebih rendah berbanding dengan grafin oksida terturun. Pada akhir kajian ini, didapati grafin oksida berjaya diturunkan setelah membuat analisa daripada pencirian Mikroskopi Imbasan Elektron Pancaran Medan dan Penyerakan Tenaga Sinar-X, Spektroskopi Infra Merah Transformasi Fourier dan Spektroskopi Penyerapan Ultralembayung-cahaya Nampak sebelum dan selepas grafin oksida disinarkan. Ini menunjukkan teknik penyinaran boleh digunakan bagi menurunkan grafin oksida kepada grafin oksida terturun.

 

Kata kunci: grafin, grafin oksida, sinar gama, FTIR, FESEM-EDX, UV-Vis

 

References

1.       Novoselov, K.S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang Y., Dubonos, S. V, Grigorieva, I. V., Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science 306(5696): 666-669.

2.       Lee, C., Wei, X., Kysar, J. W., Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (5887): 385-388.

3.       Yang, K., Liang, S., Zou, L., Huang, L., Park, C., Zhu, L., Fang, J., Fu, Q. and Wang, H. (2012). Intercalating oleylamines in graphite oxide. Langmuir 28(5): 2904-2908.

4.       Geim, A.L., Novoselov, K.S. (2007). The rise of grapheme. Nature Materials 6(3): 183-191.

5.       Stonkovich, S., Dikin, D. A., Piner, R. D., Kohlhaas K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff,          R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7): 1558-1565.

6.       Si, Y. and Samulski, E.T. (2008). Synthesis of water soluble graphene. Nano Letters 8(6): 1679-1682.

7.       Wang, G., Yang, J., Park, J., Gou. X., Wang, B., Liu, H. and Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets. Journal American Chemical Society 131: 9910-9911.

8.       Nethravathi, C. and Rajamathi, M. (2008). Chemically modified graphene sheets produced by solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46(14): 1994-1998.

9.       Luo D., Zhang G., Liu J. and Sun X. (2011). Evaluation Criteria for Reduced Graphene Oxide. Journal Physics Chemistry 115: 11327-11335

10.    Song P., Zhang X., Sun M., Cui X. and Lin. Y. (2012). Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Advances 2: 1168-1173.

11.    Khan K. A. (1981). The Radiation Chemistry of Water. Journal Physics Chemistry: 105-110.




Previous                    Content                    Next