Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 935 - 941

 

 

 

SYNTHESIS, STRUCTURAL, AND CHEMICAL PROPERTIES OF Nd(III) ISATIN 2-METHYL-3-THIOSEMICARBAZONE

 

(Sintesis, Pengstrukturan dan Sifat Kimia Nd(III) Isatin 2-Metil-3-Tiosemikarbazon)

 

Nur Nadia Dzulkifli, Yang Farina*, Bohari M Yamin

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: farina@ukm.edu.my

 

 

Received: 30 April 2015; Accepted: 28 August 2015

 

 

Abstract

Rare earth complexes can exhibit higher coordination numbers.  The rare earth metal has the ability to form a multitude of geometries and stereochemistries. Studies on rare earth complexes with organic ligands have received considerable attention. Nd(Is2MeTSC)3 [Is2MeTSC= isatin 2-methyl-3-thiosemicarbazone] was synthesized by condensation method. The compounds were structurally characterized by elemental analysis CHNS, FT-IR, NMR and thermo-gravimetric analyses.  The elemental analyses for the compounds were in good agreement with the theoretical values.  The melting point of the complex was higher than the ligand, as expected.  The X-ray crystallographic structures for Is2MTSC showed that in the solid state, the compound existed in the thione form where the C=S bond length was shorter than a single bond C-S, which was 1.82 Å.  Is2MTSC adopted an orthorhombic system, a = 14.3434(9), b = 8.4242(5), c = 17.8518(11) Å and Z = 8.  The FT-IR spectral data impled a bidentate bonding of Is2MeTSC to Nd(III) ion through carbonyl oxygen and azomethine nitrogen.  Thermal analyses (TGA) of the complex was carried out to confirm the final molecular structure of the complex and to study its thermal stability.  This study proves that the complex was formed by the coordination of ligand to metal ion and that there was no coordinated water.

 

Keywords: Nd(II), thiosemicarbazone, isatin, thermogravimetric analysis

 

Abstrak

Sebatian kompleks nadir bumi boleh mempunyai nombor koordinatan yang lebih tinggi. Logam nadir bumi berkeupayaan untuk membentuk pelbagai geometri, stereokimia. Kajian terhadap sebatian kompleks nadir bumi dengan ligan organik telah mendapat perhatian. Nd(Is2MeTSC)3 [Is2MeTSC= isatin 2-metil-3-tiosemiarbazon] telah disintesis dengan kaedah kondensasi.  Kesemua sebatian telah dicirikan dengan analisis unsur CHNS, FT-IT, NMR dan analisis termogravimetrik. Data analisis unsur bagi sebatian adalah hampir sama dengan nilai teori.  Takat lebur sebatian kompleks adalah lebih tinggi daripada ligan seperti yang dijangkakan.  Struktur kristalografi sinar-X bagi Is2MTSC menunjukkan bahawa dalam keadaan pepejal ligan wujud dalam bentuk tion di mana panjang ikatan C=S adalah lebih pendek daripada ikatan tunggal C-S iaitu 1.82 Å.  Is2MTSC menghablur dalam sistem ortorombik, a = 14.3434(9), b = 8.4242(5), c = 17.8518(11) Å dan Z = 8. Data inframerah menunjukkan Is2MTSC bertindak sebagai ikatan bidentat dengan ion Nd(III) melalui oksigen karbonil dan nitrogen azometin.  Analisis terma (TGA) bagi kompleks telah dilakukan untuk mengesahkan struktur akhir kompleks dan mengkaji kestabilan haba.  Kajian membuktikan bahawa terdapatnya pengkoordinatan sebatian ligan dengan ion logam dan mengesahkan bahawa tiada air yang terkoordinat.

 

Kata kunci: Nd(III), tiosemikarbazon, isatin, termogravimetrik analisis

 

References

1.       Pakravan, P., Kashanian, S. and Khodaei, M. M. (2013). Biochemical and Pharmacological Characterization of Isatin and Its Derivatives: From Structure to Activity. Pharmacological Reports 65:313-335.

2.       Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. and Ahsan, W. (2010). Search for Biological Active Isatins: A Short Review. International Journal of Pharmaceutical Sciences and Drug Research 2(4): 229-235.

3.       Lama, P., Aijaz, A., Neogi, S., Barbour, L. J. and Bharadwaj, P. K. (2010). Microporous La(III) Metal-Organic Framework Using a Semi-rigid Tricarboxylic Ligand: Synthesis, Single-Crystal to Single-Crystal Sorption Properties and Gas Adsorption Studies. Crystal Growth Design 10(8): 3410-3417.

4.       Shiju, C., Arish, D. and Kumaresan, S. (2013). Homodinuclear Lanthanide Complexes: Synthesis, Characterization, Cytotoxicity, DNA Cleavage, and Antimicrobial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 105:532–538.

5.       LMarques, L. F., Junior, A. A. B. C., Correa, C. C., Lahoud, M. G., Silva, R. R. D., Ribeiro, S. J. L. and Machado, F. C. (2013). First Crystal Structures of Lanthanide-Hydrocinnamate Complexes: Hydrothermal Synthesis and Photophysical Studies.  Journal of Photochemistry and Photobiology A: Chemistry 252:69– 76.

6.       X. Hongzhen, X. and Guanzhong, L. U. (2013). Crystal Structures and Fluorescence Properties of Lanthanide Complexes Prepared with 2,2′-biphenyldicarboxylic acid and 2,2′:6′,2″-terpyridine. Journal of Rare Earths 31(6):639-644.

7.       Tang, K., Zhang, J. J., Zhang, D. H., Ren, N., Yan, L. Z and Li, Y. (2013). Crystal Structures and Thermodynamic Properties of Lanthanide Complexes with 2-chloro-4,5-difluorobenzoate and 1,10-phenanthroline. Journal of Chemical. Thermodynamics 56:38–48.

8.       Eliseeva, S. V. and Bünzli, J. G. (2010). Lanthanide Luminescence for Functional Materials and Bio-sciences. Chemical Society Reviews 39:189-227.

9.       Bag, P., Maji, S. K., Biswas, P., Flörke, U. and Nag, K. (2013). Macrocyclic Lanthanide (III) Complexes of Iminophenol Schiff Bases and Carboxylate Anions: Syntheses, Structures and Luminescence Properties. Polyhedron 52: 976–985.

10.    Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.

11.    Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI

12.    Sheldrick, G. M. (2008). Acta Cryst A 64:112.

13.    Spek. A. L. (2009). Acta Cryst. D 65:148-155.

14.    Sreekanth, A. and Kurup, M. R. P. (2004). Synthesis, EPR and Mossbauer Spectral Studies of New Iron(III) Complexes with 2-benzoylpyridine-N(4), N(4)-(butane-1,4-diyl) thiosemicarbazone (HBpypTsc): X-ray Structure of [Fe(BpypTsc)2]FeCl4.2H2O and The Free Ligand. Polyhedron 23:969-978.

15.    Siddiqi, Z. A., Shahid, A. M., Khalid, M., Sharma, P. K. and Siddique, A. (2013). Spectroscopic, Luminescence, Electrochemical and Antimicrobial Studies of Lanthanide Complexes of Bis-benzimidazole Derived Ligands.  Journal of Molecular Structure. 1037: 402–411.

16.    Pitchaimani, P., Lo, K. M. and Elango, K. P. (2013). Synthesis, Spectral Characterization, Crystal Structures and Catalytic Activity of A Series of Lanthanide(III) Azepane Dithiocarbamate Complexes. Polyhedron 54:60–66.

17.    S. Cotton. (2006).  Lanthanide and Actinide Chemistry, John Wiley & Sons Ltd.

18.    Dubey, R. K., Mariya, A. and Mishra, S. K. (2011). Synthesis and Spectral (IR, NMR, FAB-MS and XRD) Characterization of Lanthanide Complexes Containing Bidentate Schiff Base Derived from Sulphadiazine and O-Vanillin.  International Journal of Basic and Applied Chemical Sciences 1(1):70-78.

19.    Meyers, R. A. (2000) Interpretation of Infrared Spectra, A Practical Approach John Coates In Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.); John Wiley & Sons Ltd, Chichester.

20.    Tamboura, F. B., Diouf, O., Barry, A. H., Gaye, M. and Sall, A. S. (2012). Dinuclear Lanthanide(III) Complexes with Large-Bite Schiff Bases Derived from 2,6-diformyl-4-Chlorophenol and Hydrazides: Synthesis, Structural Characterization and Spectroscopic Studies. Polyhedron 43:97-103.

21.    Akinchan, N. T., Drozdzewski, P. M. and Holzer, W. (2002). Syntheses and Spectroscopic Studies on Zinc(II) and Mercury(II) Complexes of Isatin-3-thiosemicarbazone. Journal of Molecular Structure 641:17–22.




Previous                    Content                    Next