Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1131 - 1136

 

 

 

GLYCEROL AS A CHEAPER CARBON SOURCE IN BACTERIAL CELLULOSE (BC) PRODUCTION BY GLUCONACETOBACTER XYLINUS DSM46604 IN BATCH FERMENTATION SYSTEM

 

(Gliserol Sebagai Sumber Karbon Kos Rendah Dalam Penghasilan Bakteria Selulosa (BC) Oleh Gluconacetobacter xylinus DSM46604 Dalam Sistem Penapaian Berkelompok)

 

Azila Adnan1*, Giridhar R. Nair2, Mark C. Lay3, Janis E. Swan3, Roslan Umar4,5

 

1School of Fundamental Sciences,

Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia

2Department of Biotechnology and Biochemical Engineering,

Sree Buddha College of Engineering, Pattoor P.O., Alappuzha – 690529, India

3School of Engineering, Faculty of Science & Engineering,

University of Waikato, Private Bag 3105, Hamilton, New Zealand

4East Coast Environmental Research Institute (ESERI)

5Faculty of Contemporary Islamic Studies

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: azila.adnan@umt.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

Bacterial cellulose (BC) is a polymer of glucose monomers, which has unique properties including high crystallinity and high strength. It has potential to be used in biomedical applications such as making artificial blood vessel, wound dressings, and in the paper making industry. Extensive study on BC aimed to improve BC production such as by using glycerol as a cheaper carbon source. BC was produced in shake flask culture using five different concentrations of glycerol (10, 20, 30, 40 and 50 g/L). Using concentration of glycerol above 20 g/L inhibited culture growth and BC production. Further experiments were performed in batch culture (3-L bioreactor) using 20 g/L glycerol. It produced yield and productivity of 0.15 g/g and 0.29 g/L/day BC, respectively. This is compared with the control medium, 50 g/L glucose, which only gave yield and productivity of 0.05 g/g and 0.23 g/L/day, respectively. Twenty g/L of glycerol enhanced BC production by Gluconacetobacter xylinus DSM46604 in batch fermentation system.

 

Keywords: bacterial cellulose, glycerol, fermentation, carbon source

 

Abstrak

Bakteria selulosa (BC) adalah polimer daripada monomer glukosa, yang mempunyai ciri-ciri unik termasuk penghabluran yang tinggi dan kekuatan yang tinggi. Ia mempunyai potensi untuk digunakan dalam aplikasi bioperubatan seperti membuat saluran darah tiruan, pembalut luka, dan dalam industri pembuatan kertas itu. Kajian yang menyeluruh pada BC bertujuan untuk meningkatkan pengeluaran BC seperti dengan menggunakan gliserol sebagai sumber karbon kos rendah. Bakteria selulosa telah dihasilkan dalam kelalang penggoncang menggunakan lima kepekatan gliserol yang berbeza (10, 20, 30 , 40 dan 50 g/L). Penggunaan kepekatan gliserol melebihi 20 g /L telah merencat pertumbuhan kultur dan penghasilan BC. Ujikaji lanjutan telah dilakukan di dalam sistem penapaian berkelompok (3-L bioreaktor) menggunakan 20 g/L gliserol. Ia masing-masing telah menghasilkan hasil dan produktiviti sebanyak 0.15 g/g dan 0.29 g/L/hari BC. Ini dibandingkan dengan medium kawalan, 50 g/L glukosa, masing-masing hanya memberikan hasil dan produktiviti sebanyak 0.05 g/g dan 0.23 g/ L/hari  BC. Dua puluh g/L gliserol telah mempertingkatkan penghasilan BC oleh Gluconacetobacter xylinus DSM46604 dalam sistem penapaian berkelompok.

 

Kata kunci: bakteria selulosa, gliserol, penapaian, sumber karbon

 

References

1.       Keshk, S. M. (2014). Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydrate Polymer 99: 98-100.

2.       Mohite, B. V. and Patil, S. V. (2014). A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry 61(2):101 – 110.

3.       El-Saied, H., Basta, A. H. and Gobran, R. H. (2004). Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering 43(3): 797-820.

4.       Mohammadkazemi, F., Azin, M. and Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers 117: 518-523.

5.       Koutinas, A. A., Sypsas, V., Kandylis, P., Michelis, A., Bekatorou, A., Kourkoutas, Y. and Yianoulis, P. (2012). Nano-Tubular Cellulose for Bioprocess Technology Development. PLoS ONE 7(4): 1-9.

6.       Donini, Í. A., De Salvi, D. T., Fukumoto, F. K., Lustri, W. R., Barud, H. S., Marchetto, R. and Ribeiro, S. J. (2010). Biosynthesis and recent advances in production of bacterial cellulose. Eclética Química 35(4): 165-178.

7.       Johnson, D. T. and Taconi, K. A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress 26(4): 338-348.

8.       Ayoub, M. and Abdullah, A. Z. (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews 16(5), 2671-2686.

9.       Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426–428.

10.    Stasiak-Rozanska, L., Blazejak, S. and Miklaszewska, A. (2011). Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone. Acta Scientiarum Polonorum. Technologia Alimentaria, 10(1):35-49.

11.    Jung, H. I., Jeong, J. H., Lee, O. M., Park, G.T., Kim, K. K., Park, H. C., and Son, H. J. (2010). Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresource Technology 101(10): 3602-3608.

12.    Kim, S. Y., Kim, J. N., Wee, Y. J., Park, D. H., and Ryu, H. W. (2006). Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Applied Biochemistry and Biotechnology 131(1-3), 705-715.

13.    Hungund, B. S. and Gupta, S. G. (2010). Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2. Journal of Microbial and Biochemical Technology 2(5): 127-133.

14.    Keshk, S. and Sameshima., K. (2005). Evaluation of different carbon sources for bacterial cellulose production. African Journal of Biotechnology 4(6): 478-482.

15.    Ross, P., Mayer, P. and Benziman, M. (1991). Cellulose biosynthesis and function bacteria. Microbiology Review 55: 35-58.

16.    Schramm, M., Gromet, Z. and Hestrin, S. (1957). Synthesis of cellulose by Acetobacter xylinum. 3. Substrates and inhibitors. Journal of Biochemistry 67(4): 669-679.




Previous                    Content                    Next