Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1019 - 1031

 

 

 

ANALYSIS OF SURFACE WATER POLLUTION IN THE KINTA RIVER USING MULTIVARIATE TECHNIQUE

 

(Penilaian Pencemaran Air Permukaan di Sungai Kinta Menggunakan Teknik Multivariat)

 

Hamza Ahmad Isiyaka and Hafizan Juahir*

 

East Coast Environmental Research Institute (ESERI),

University Sultan Zainal Abidin,

Gong Badak Campus, 21300 Kuala Terengganu, Terengganu. Malaysia.

 

*Corresponding author: hafizanjuahir@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31 parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76% in the total variance and attributes the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear regression and principal component scores indicates that 41% of the total pollution load is from rock weathering and untreated waste water, 26% from waste discharge, 24% from surface runoff and 7% from faecal waste. This study proposes a reduction in the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and multivariate technique can provide a simple representation of complex and dynamic water quality characteristics.

 

Keywords: multivariate techniques, source apportionment, multiple linear regression, principal component analysis; Kinta river; water pollution

 

Abstrak

Kajian ini bertujuan untuk menyiasat variasi bagi ruang dalam mengenalpasti ciri-ciri di stesen pemantauan kualiti air, mengenalpasti parameter yang paling penting dan sumber utama kemungkinan terhadap pencemaran dan membahagi sumber kategori di Sungai Kinta. 31 parameter yang dikumpul dari lapan stesen pemantauan selama lapan tahun (2006-2013) telah digunapakai dalam kajian ini. Lapan stesen pengawasan telah telah dibahagikan kepada tiga kelompok bebas dalam bentuk dendrogram. Pengurangan mendadak bilangan parameter yang dipantau dari 31 parameter kepada lapan dan sembilan parameter penting (P <0.05) telah dicapai dengan menggunakan kaedah langkah demi langkah ke hadapan dan langkah demi langkah ke belakang melalui analisis pembezalayan (AP). Analisis komponen utama (AKU) menyumbang lebih daripada 76% dalam jumlah varians dan sifat-sifat punca pencemaran kepada proses antropogenik dan semula jadi. Pembahagian sumber menggunakan pelbagai regresi linear gabungan dan skor komponen utama menunjukkan bahawa 41% daripada jumlah beban pencemaran adalah daripada luluhawa batu dan air sisa yang tidak dirawat, 26% daripada pelepasan sisa, 24% daripada air larian permukaan dan 7% daripada sisa najis. Kajian ini mencadangkan pengurangan dalam bilangan stesen pemonitoran dan parameter untuk pengurusan kos yang berkesan dan masa dalam proses pemantauan dan teknik multivariat boleh menyediakan perwakilan yang mudah untuk ciri-ciri kualiti air yang kompleks dan dinamik.

 

Kata kunci:    teknik multivariate, sumber pembahagian; regresi linear, analisis komponen utama; Sungai Kinta; pencemaran air

 

References

1.       Mustapha, A., Aris, A. Z., Ramli, M. F. and Juahir, H. (2012). Spatial-temporal variation of surface water quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach. Journal of Environmental Science and Health Part A 47(11): 1551-1560.

2.       Khalil, B., Ouarda, T. B. M. J. and St-Hilaire, A. (2011). Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. Journal of Hydrology 405(3): 277-287.

3.       Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yuan, Q. and Ye, F. (2009). Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environmental Monitoring and Assessment 152(1-4): 123-131.

4.       Satheeshkumar, P. and Khan, A. B. (2012). Identification of mangrove water quality by multivariate statistical analysis methods in Pondicherry coast, India. Environmental Monitoring and Assessment 184(6): 3761-3774.

5.       Vieira, J., Fonseca, A., Vilar, V. J. P., Boaventura, R. A. R. and Botelho, C. M. S. (2012). Water quality in Lis River. Portugal. Environmental Monitoring and Assessment 184(12): 7125-7140.

6.       Ogwueleka, T. C. (2015). Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria. Environmental Monitoring and Assessment 187(3): 1-17.

7.       Usman, U. N., Toriman, M. E., Juahir, H., Abdullahi, M. G., Rabiu, A. A. and Isiyaka, H. (2014). Assessment of Groundwater Quality Using Multivariate Statistical Techniques in Terengganu. Science and Technology 4(3): 42-49.

8.       Mustapha, A., Aris, A. Z., Juahir, H., Ramli, M. F. and Kura, N. U. (2013). River water quality assessment using environmentric techniques: case study of Jakara River Basin. Environmental Science and Pollution Research 20(8): 5630-5644.

9.       Wang, Y. B., Liu, C. W., Liao, P. Y. and Lee, J. J. (2014). Spatial pattern assessment of river water quality: implications of reducing the number of monitoring stations and chemical parameters. Environmental Monitoring and Assessment, 186(3): 1781-1792.

10.    Mustapha, A., Aris, A. Z., Juahir, H., Ramli, M. F. and Kura, N. U. (2013). River water quality assessment using environmentric techniques: case study of Jakara River Basin. Environmental Science and Pollution Research 20(8): 5630-5644.

11.    Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yuan, Q. and Ye, F. (2009). Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environmental Monitoring and Assessment 152(1-4): 123-131.

12.    Mustapha, A., Aris, A. Z., Ramli, M. F. and Juahir, H. (2012). Spatial-temporal variation of surface water quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach. Journal of Environmental Science and Health Part A, 47(11): 1551-1560.

13.    Mustapha, A., Aris, A. Z., Yusoff, F. M., Zakaria, M. P., Ramli, M. F., Abdullah, A. M. and Narany, T. S. (2014). Statistical Approach in Determining the Spatial Changes of Surface Water Quality at the Upper Course of Kano River, Nigeria. Water Quality, Exposure and Health 6(3): 127-142.

14.    Department of Environment Malaysia (DOE) (2009) Malaysia Environmental Quality Report, Ministryof Science, Technology and Environment, Kuala Lumpur.

15.    Shrestha, S. and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software 22(4): 464-475.

16.    Fan, X., Cui, B., Zhao, H., Zhang, Z. and Zhang, H. (2010). Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences 2: 1220-1234.

17.    Tobiszewski, M., Tsakovski, S., Simeonov, V. and Namieśnik, J. (2010). Surface water quality assessment by the use of combination of multivariate statistical classification and expert information. Chemosphere 80(7): 740-746.

18.    Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. I. and Surif, S. (2012). Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environmental Monitoring and Assessment 184(11): 6735-6748.

19.    Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E. and Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment 173(1-4): 625-641.

20.    Deepulal, P. M., Sujatha, C. H. and George, R. (2012). Chemometric study on the trace metal accumulation in the sediments of the Cochin Estuary―Southwest coast of India. Environmental Monitoring and Assessment 184(10): 6261-6279.

21.    Wahid, N. B. A., Latif, M. T. and Suratman, S. (2013). Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere 91(11): 1508-1516.

22.    Aris, A. Z., Praveena, S. M., Isa, N. M., Lim, W.Y., Juahir, H., Yusoff, M. K. and Mustapha, A. (2013). Application of environmetricmethods to surface water quality assessment of Langkawi Geopark (Malaysia). Environmental Forensics 14(3): 230–239.

23.    Oyeyiola, A. O., Davidson, C. M., Olayinka, K. O., Oluseyi, T. O. and Alo, B. I. (2013). Multivariate analysis of potentially toxic metals in sediments of a tropical coastal lagoon. Environmental Monitoring and Assessment 185(3): 2167-2177.

24.    Isiyaka, H., Juahir, H., Toriman, M. E., Gasim, B. M., Azid, A., Amri, M. K., Ibrahim, A., Usman, U. N., Rano, A. R. A. and Garba, M. A. (2014). Spatial Assessment of Air Pollution Index Using Environ Metric Modeling Techniques. Advances in Environmental Biology 8(24): 244-256.

25.    Pati, S., Dash, M. K., Mukherjee, C. K., Dash, B. and Pokhrel, S. (2014). Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India. Environmental Monitoring and Assessment 186(10): 6385-6402.

26.    Latif, M. T., Dominick, D., Ahamad, F., Khan, M. F., Juneng, L., Hamzah, F. M. and Nadzir, M. S. M. (2014). Long term assessment of air quality from a background station on the Malaysian Peninsula. Science of The Total Environment 482: 336-348.

27.    Mustaffa, N. I. H., Latif, M. T., Ali, M. M. and Khan, M. F. (2014). Source apportionment of surfactants in marine aerosols at different locations along the Malacca Straits. Environmental Science and Pollution Research 21(10): 6590-6602.

28.    Jaafar, S. A., Latif, M. T., Chian, C. W., Han, W. S., Wahid, N. B. A., Razak, I. S., Khan, M. F. and Tahir, N. M. (2014). Surfactants in the sea-surface microlayer and atmospheric aerosol around the southern region of Peninsular Malaysia. Marine Pollution Bulletin 84(1): 35-43.

29.    Ghani, A., Zakaria, N. A., Kiat, C.C., Ariffin, J., Abu Hasan, Z., Abdul Gaffar, A. B., 2007. Revised equations for manning’s coefficient for sand-bed rivers. International Journal of River Basin Management 5 (4): 329–346.

30.    Zali, M. A., Retnam, A., Juahir, H., Zain, S. M., Kasim, M. F., Abdullah, B. and Saadudin, S. B. (2011). Sensitivity analysis for water quality index (WQI) prediction for Kinta River, Malaysia. World Applied Sciences Journal: 60 – 65.

31.    Lau, J., Hung, W.T. and Cheung, C.S. (2009). Interpretation of air quality in relation to monitoring station’s surrounding. Atmospheric Environmetric 43: 769-777.

32.    Singh, K. P., Malik, A., Mohan, D. and Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research 38(18): 3980-3992.

33.    Farmaki, E. G., Thomaidis, N. S., Simeonov, V. and Efstathiou, C. E. (2012). A comparative chemometric study for water quality expertise of the Athenian water reservoirs. Environmental Monitoring and Assessment 184(12): 7635-7652.

34.    Azid, A., Juahir, H., Toriman, M. E., Kamarudin, M. K. A., Saudi, A. S. M., Hasnam, C. N. C. and Yamin, M. (2014). Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural Network Techniques: a Case Study in Malaysia. Water, Air, & Soil Pollution 225(8): 2063 – 2077.

35.    Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yuan, Q. and Ye, F. (2009). Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environmental Monitoring and Assessment 152(1-4): 123-131.

36.    Brūmelis, G., Lapiņa, L., Nikodemus, O. and Tabors, G. (2000). Use of an artificial model of monitoring data to aid interpretation of principal component analysis. Environmental Modelling & Software 15(8): 755-763.

37.    Love, D., Hallbauer, D., Amos, A. and Hranova, R. (2004). Factor analysis as a tool in groundwater quality management: two southern African case studies. Physics and Chemistry of the Earth, Parts A/B/C 29(15): 1135-1143.

38.    Liu, C.W., Lin, K. H. and Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Science of Total Environment 313: 7789.

39.    Chatterjee, S. and Price, B. (1999) Regression Analysis by Example. third ed. Wiley, Chichester.

40.    Petrie, A. and Sabin, C. (2000). Medical Statistics at a Glance. Blackwell Science, Oxford.

41.    Kovač-Andrić, E., Brana, J. and Gvozdić, V. (2009). Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecological Informatics 4(2): 117-122.

42.    Gazzaz, N. M., Yusoff, M. K., Aris, A. Z., Juahir, H. and Ramli, M. F. (2012). Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Marine Pollution Bulletin 64(11): 2409-2420.

43.    Pastor-Bárcenas, O., Soria-Olivas, E., Martín-Guerrero, J. D., Camps-Valls, G., Carrasco-Rodríguez, J. L. and del Valle-Tascón, S. (2005). Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modelling. Ecological Modelling 182(2): 149-158.

44.    Napacho, Z. A. and Manyele, S. V. (2010). Quality assessment of drinking water in Temeke District (part II): Characterization of chemical parameters. African Journal of Environmental Science and Technology 4(11): 775-789.

45.    Kanmani, S. and Gandhimathi, R. (2013). Investigation of physicochemical characteristics and heavy metal distribution profile in groundwater system around the open dump site. Applied Water Science 3(2): 387-399.

46.    WHO. (2011). Hardness in drinking water: background document for preparation of WHO guidelines for drinking water quality. World Health Organization, Geneva.

47.    Busse, M. (2013). Sign and symptoms of too much magnesium. http:// www.livestrong.com/article/379016-signs-and-symptoms-of-toomuch- magnesium

48.    Seth, R., Mohan, M., Dobhal, R., Gupta, V. K., Singh, P., Singh, R. and Gupta, S. (2014). Application of Chemometric Techniques in the Assessment of Groundwater Quality of Udham Singh Nagar, Uttarakhand, India. Water Quality, Exposure and Health 6(4): 199-216.

49.    Chen, H., Teng, Y., Yue, W. and Song, L. (2013). Characterization and source apportionment of water pollution in Jinjiang River, China. Environmental Monitoring and Assessment 185(11): 9639-9650.

50.    Myers, S. A., Nield, A. and Myers, M. (2012). Zinc transporters, mechanisms of action and therapeutic utility: implications for type 2 diabetes mellitus. Journal of Nutrition and Metabolism: 1-14.

51.    Minnesota Pollution Control Agency. (2007). Phosphorus: Sources, Forms, Impact on Water Quality

52.    Kumar, A., Bisht, B. S., Joshi, V. D., Singh, A. K. and Talwar, A. (2010). Physical, chemical and bacteriological study of water from rivers of Uttarakhand. Journal of Human Ecology 32(3): 169-173.

53.    Yang, L., Linyu, X. U. and Shun, L. (2009). Water quality analysis of the Songhua River Basin using multivariate techniques. Journal of Water Resource and Protection 1(02): 110-121.

54.    McFarland, A. M., & Hauck, S. L. (1999). Relating agricultural land uses to in-stream stormwater quality. Journal of Environmental Quality 28(2): 836–844.

 

 




Previous                    Content                    Next