Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 722 - 729

 

 

 

DEGRADATION BEHAVIOUR OF CHLORPYRIFOS IN SPINACH (SPINACIA OLERACEA) AND SOIL

 

(Perlakuan Degradasi Chlorpyrifos di dalam Bayam (Spinacia Oleracea) dan Tanah

 

Nurul Shazlinie Abdul Shukor, Siti Norhafiza Mohd Khazaai*, Zurhana Mat Hussin,

Sarah Laila Mohd Jan

 

Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Razak Jengka, Pahang, Malaysia

 

*Corresponding author: ctnorhafiza@ pahang.uitm.edu.my

 

 

Received: 23 November 2014; Accepted: 27 June 2015

 

 

Abstract

Chlorpyrifos, an organophosphorus insecticide that is widely used in pest control. This study focuses on the chlorpyrifos residue and degradation behaviour in spinach (Spinacia oleracea) and soil. The soil analyses include the determination of particle size, pH, percentage moisture and total organic carbon. The pH of soil was 4.95 with the content of 4.06 gkg-1 organic carbon, 15.55% moisture and 65.58% fine sand. A liquid-liquid extraction using acetone and water (70:30, v/v) followed by UV-Vis Spectrophotometer technique was performed to determine the residues of chlorpyrifos. The maximum absorbance (λmax) of chlorpyrifos was observed at 229 nm. Exponential relations were found to fit the first-order rate equation. Results had also shown that chlorpyrifos degradation equation in spinach was C=2.112e-0.09993t with a half-life (T0.5) of 6.93 days and R2 = 0.99383. The rate equation for degradation of chlorpyrifos in the soil sample was C=2.102e-0.01653t with R2 = 0.99383 and T0.5= 42.09 days. When chlorpyrifos formulations were applied according to the recommended dose, the final residues in both samples exceeded the Codex Alimentarius Commission (CODEX) maximum residue limit of 1 mgkg-1. Therefore, this work suggested that the harvest interval should be more than 14 days, which considered as safe to animal and humans.

 

Keywords: chlorpyrifos, degradation, rate, spinach, soil

 

Abstrak

Chlorpyrifos adalah racun serangga organofosforus yang digunakan secara meluas dalam kaedah kawalan perosak pertanian. Kajian ini memberi fokus pada analisis sisa dan pencemaran chlorpyrifos di dalam Spinacia oleracea (bayam) dan tanah. Analisa bagi sampel tanah adalah saiz zarah, pH, peratusan kelembapan dan jumlah kandungan karbon organik. pH tanah adalah 4.95 dengan 4.06 g kg-1 karbon organik, 15.55% kelembapan dan 65.58% pasir halus. Sisa chlorpyrifos diekstrak daripada bayam dan tanah dengan menggunakan aseton/air, membersihkan dengan pembahagian cecair/cecair dan kromatografi lajur, memekatkan kepada jumlah kecil dan dianalisis oleh UV-Vis. Keserapan tertinggi chlorpyrifos adalah pada 229 nm. Hubungan eksponen yang terhasil mematuhi persamaan kadar tertib pertama. Hasil kajian menunjukkan bahawa degradasi kepekatan chlorpyrifos dalam bayam bertepatan dengan C= 2.112e-0.09993t dengan separuh hayat chlorpyrifos dalam bayam adalah 6.93 hari dengan R2= 0.99383. Degradasi chlorpyrifos dalam tanah dengan persamaan regresi dinamik dan separuh hayat chlorpyrifos dalam sampel tanah adalah C= 2.102e-0.01653t, R2= 0.99383 , T0.5= 42.09 hari. Apabila rumusan chlorpyrifos telah digunakan mengikut dos yang disyorkan, sisa-sisa akhir dalam sampel bayam dan tanah adalah melebihi had maksimum CODEX dengan 1 mg kg-1. Oleh itu, selang tuaian perlu lebih dari 14 hari, yang boleh dianggap sebagai selamat untuk haiwan dan manusia.

 

Kata kunci: chlorpyrifos, degradasi, kadar, bayam, tanah

 

References

1.       Łozowicka, B., Jankowska, M., & Kaczyński, P. (2012). Pesticide residues in Brassica vegetables and exposure assessment of consumers. Food Control, 25(2): 561-575.

2.       Sharma, Dipakshi, Nagpal, Avinash, Pakade, Yogesh B., & Katnoria, Jatinder Kaur. (2010). Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: A review. Talanta, 82(4): 1077-1089.

3.       EL-Saeid, M. H., & Selim, M. T. (2013). Multiresidue Analysis of 86 Pesticides Using Gas Chromatography Mass Spectrometry: II-Nonleafy Vegetables. Journal of Chemistry, 2013: 1–10.

4.       Yuan, Yuwei, Chen, Chen, Zheng, Chuangmu, Wang, Xiaoli, Yang, Guiling, Wang, Qiang, & Zhang, Zhiheng. (2014). Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control, 36(1): 63-68.

5.       Randhawa, M. Atif, Anjum, F. Muhammad, Ahmed, Anwaar, & Randhawa, M. Saqib. (2007). Field incurred chlorpyrifos and 3,5,6-trichloro-2-pyridinol residues in fresh and processed vegetables. Food Chemistry, 103(3): 1016-1023.

6.       Tang, T., Dong, J., Ai, S., Qiu, Y., & Han, R. (2011). Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin. Journal of Hazardous Materials, 188(1-3): 92–97.

7.       Zhang, Y., Xiao, Z., Chen, F., Ge, Y., Wu, J., & Hu, X. (2010). Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrasonics Sonochemistry, 17(1): 72–7.

8.       Chishti, Z., Hussain, S., Arshad, K. R., Khalid, A., & Arshad, M. (2013). Microbial degradation of chlorpyrifos in liquid media and soil. Journal of Environmental Management, 114: 372–80.

9.       Chai, L. K., Wong, M. H., & Bruun Hansen, H. C. (2013). Degradation of chlorpyrifos in humid tropical soils. Journal of Environmental Management, 125: 28–32.

10.    Makino, Y., Oshita, S., Murayama, Y., Mori, M., Kawagoe, Y., & Sakai, K. (2009). Nondestructive analysis of chlorpyrifos on apple skin using UV reflectance. Transactions of the ASABE, 52: 1955-1960.

11.     Fang H., Xiang Y. Q., Hao Y. J., Chu X. Q., Pan X. D., Yu J. Q & Yu Y. L. (2008). Fungal degradation of chlorpyrifos by verticillium sp. DSP in pure cultures and its use in biomediation of contaminated soil and pakchoi. International Biodeterioration & Biodegradation, 294-303.

12.    Cao, Yongsong, Chen, Jiuxin, Wang, Yuelong, Liang, Ji, Chen, Lihua, & Lu, Yitong. (2005). HPLC/UV analysis of chlorfenapyr residues in cabbage and soil to study the dynamics of different formulations. Science of The Total Environment, 350(1–3): 38-46.

13.    Jaafar, A. A., Said, A. S., Asghar, Tajuddin, Z., & Mohidin, H. (2010). Fundamentals of Soil Science. Shah Alam: Universiti Publication Centre (UPENA).

14.    Ostrowska, Apolonia, & Porębska, Grażyna. (2012). Assessment of TOC-SOM and SOM-TOC Conversion in Forest Soil. Polish Journal of Environmental Studies, 21(6): 1767-1775.

15.    Hassink, Jan, Whitmore, Andrew P., & Kubát, Jaromir. (1997). Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter. In M. K. v. Ittersum & S. C. v. d. Geijn (Eds.), Developments in Crop Science, 25: 245-255.

16.    Jankauskas, B., Slepetiene, A., Jankauskiene, G., Fullen, M. a., & Booth, C. a. (2006). A comparative study of analytical methodologies to determine the soil organic matter content of Lithuanian Eutric Albeluvisols. Geoderma, 136(3-4): 763–773. doi:10.1016/j.geoderma.2006.05.015.

17.    Müller, K., Magesan, G. N., & Bolan, N. S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment, 120: 93-116.

18.    Abo-El-Seoud, M. A., Shams-El-Din, A. M., Danial, L. N., & Ahmed, S. M. (1995). Residues and persistence of some organophosphorus insecticides applied to cabbage plants. Food Chemistry, 54: 137-140.

19.    Anon (1993). Codex Alementarius Commission FAO and WHO food. Standard Program, 12(2) Supplement.

20.    Chai, L. K., Wong, M. H., Mohd-Tahir, N., & Hansen, H. C. (2010). Degradation and mineralization kinetics of acephate in humid tropic soils of Malaysia. Chemosphere, 79(4): 434-440.

 




Previous                    Content                    Next