Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 831 - 840

 

 

 

BACTERIOCIN ISOLATED FROM HALOMONAS SP.: A BACTERIAL DING PROTEIN?

 

(Pemencilan Bakteriosin dari Halomonas sp. : Sejenis Bakteria DING protin?)

 

Atirah Azemin1*, Peter Klappa2, Mohd Shahir Shamsir Omar1

 

1Faculty of Biosciences and Medical Engineering,

Universiti Teknologi Malaysia,81310 Skudai, Johor, Malaysia

2School of Biosciences, Stacey Building,

University of Kent, Canterbury, Kent, CT2 7NJ,United Kingdom

 

*Corresponding author: atirahasyifa@yahoo.com

 

 

Received: 23 November 2014; Accepted: 27 June 2015

 

 

Abstract

A marine halophile, Halomonas sp. strain M3 was isolated from Straits of Johor, Malaysia and produce bacteriocin CC that acts as bacteriostatic agent. Characterisation of the bacterium showed that optimal growth and bacteriocin production is at ambient temperature, pH of 8-8.5 in nutrient broth medium supplemented with 2.9% w/v NaCI to mimic saltwater conditions. The stability studies indicated that bacteriocin CC is heat-labile (35°C-50°C) and was stable over 2 years when stored in 0.02M Tris-HCI with 30-60% glycerol at 4°C. A loss of activity was detected after proteolytic enzymes treatment, indicating the proteinaceous nature of the antimicrobial compound. The amino acid sequence of bacteriocin CC was obtained by Edman degradation and MALDI-TOF analysis, showed the characteristic sequence of a DING protein (D-I-N-G-G-G-A-T-L-P-Q-A-L-Y-Q) in size 38.9-kDa  at pI of 6.8. These proteins constitute a conserved and widely distributed set of proteins found in all kingdoms with ligand-binding activities and hydrolytic enzyme, suggesting a possible role in cell signalling and bio mineralization in DING isolates. Intriguingly, DING proteins also have been involved as an anti-tumour agent in humans. Thus, bacteriocin CC as DING protein family members should be further studied to investigate its potential as a novel antimicrobial agent.

 

Keywords: antimicrobial activity, bacteriocin, DING protein, Halomonas sp. Strain M3

 

Abstrak

Sejenis halofil marin Halomonas sp. strain M3 telah dipencilkan daripada Selat Johor, Malaysia dan menghasilkan bakteriosin CC yang bertindak sebagai ejen bakteriostatik. Pencirian bakteria ini menunjukkan bahawa pertumbuhan yang optima pada suhu bilik, pH 8-8.5 dalam nutrien media yang ditambah dengan 2.9% w/v NaCI untuk meniru keadaan air masin. Kajian kestabilan menunjukkan bahawa bakteriosin CC adalah tahan haba  (35°C-50 °C) dan stabil sepanjang 2 tahun apabila disimpan dalam 0.02M Tris-HCI bersama 30-60% gliserol pada 4°C. Kehilangan aktiviti telah dikesan selepas  rawatan enzim proteolitik, menunjukkan sifat protin dalam komposisi antimikrob. Urutan asid amino bakteriosin CC telah diperolehi dengan menggunakan degradasi Edman dan analisis MALDI-TOF, menunjukkan ciri protin DING (D-I-N-G-G-G-A-T-L-P-Q-A-L-Y-Q) dalam saiz 38.9-kDa pada pI 6.8. Protin ini membentuk satu set yang terpelihara dan edaran protin ini didapati secara meluas dalam semua hidupan dengan aktiviti pengikatan-ligan dan enzim hidrolitik, mencadangkan peranan yang mungkin ada dalam pengisyaratan sel dan bio mineral dalam pemencilan DING yang lain. Menariknya, DING protin juga terlibat sebagai agen anti-tumor pada manusia. Oleh itu, bakteriosin CC sebagai ahli keluarga protin DING, perlu dikaji lagi untuk menyiasat sekiranya ia berpotensi sebagai ejen antimikrob yang baru.

 

Kata kunci: aktiviti antimikrob, bakteriosin, DING protin, Halomonas sp. Strain M3

 

References

1.       Ngo, D-H., Vo, T-S., Ngo, D-N., Wijesekara, I. and Kim, S-K. (2012). Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Biological Macromolecules, 51: 378-383.

2.       Faulkner, D.J. (2000). Marine natural products. Natural Product Reports, 17: 7-55.

3.       Chen, L., Wang, G., Bu, T., Zhang, Y., Wang, Y., Liu, M. and Lin, X. (2010). Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World Microbiology Biotechnology, 26: 879-888.

4.       Pašić, L., Velikonja, B.. H. and Ulrih, N. P. (2008). Optimization of the culture conditions for the production of a bacteriocin from halophilic archaeon Sech7a. Preparative Biochemistry Biotechnology, 38: 229-245.

5.       Ishibashi, M., Yamashita, S. and Tokunaga, M. (2005). Characterization of halophilic alkaline phosphatase from Halomonas sp. 593, a moderately halophilic bacterium. Biosciences Biotechnology Biochemistry, 69 (6): 1213-1216.

6.       Arahal, D., R., Russell, H., Carol, V., Litchfield, D., Melanie, R., Mormile, B., Tindall, J., Aharon, O., Victoria, B., Quesada, E. and Ventosa, A. (2007). Recommended minimal standards for describing new taxa of the family Halomonadaceae. Systematic Evolutionary Microbiology, 57: 2436–2446.

7.       Isnansetyo, A. and Kamei, Y. (2003). MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolic sp. Nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrobial and Chemotheraphy, 47 (2): 480-488.

8.       Bitzer, J., Große, T., Wang, L., Lang, S., Beil, W. and Zeeck, A. (2006). New aminophenoxazinones from a marine Halomonas sp.: fermentation, structure elucidation and biological activity.  Antibiotics, 59 (2): 86-92.

9.       Mabinya, L., V., Cosa, S., Mkwetshana, N. and Okoh, A., I. (2011). Halomonas sp. OKOH – a marine bacterium isolated from the bottom sediment of algoa bay – produces a polysaccharide bioflocculant: partial characterization and biochemical analysis of its properties. Molecules, 16: 4358-4370.

10.    Ojima, T., Saburi, W., Yamamoto, T. and Kudo, T. (2012). Characterization of Halomonas sp. strain H11 α-glucosidase activated by monovalent cations and its application for efficient synthesis of α-D-glucosylglycerol. Applied and Environmental Microbiology, 78 (6): 1836-1845.

11.    Chen, W. and Liu, Y. (2013). Isolation and identification of Halomonas sp. ZSCW-10: a moderately halophilic bacteria strain with cellulose activity. Advances Materials Research, 749: 236-241.

12.    Donio, M., B., S., Ronica, F., A., Viji, V., T., Velmurugan, S., Jenifer, J., S., C., A., MichaelBabu, M., Dhar, P. and Citarasu, T. (2013). Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus, 2 (149): 1-10.

13.    Juan, L., Fuchao, L., Ling, L., Peng, J. and Zhaopu, L. (2013). Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrropphyta). Chinese Journal of Oceanology and Limnology, 31 (6): 1241-1247.

14.    Peschel, A. and Sahl, H.S. (2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nature Reviews Microbiology, 4: 529-536.

15.    Kanagasabhapathy, M. and Nagata, S. (2008). Cross-species induction of antibacterial activity produced by epibiotic bacteria isolated from Indian marine sponge Pseudoceratina purpurea. World Microbiology Biotechnology, 24: 687–691.

16.    Di Maro ,A., De Maio, A., Castellano, S., Parente, A., Farina, B., and Faraone-Mennella, M.R. (2009). The ADP-ribosylating thermozyme from Sulfolobus solfataricus is a DING protein. Biology Chemistry, S1431–S6730.

17.    Ellen, A., F., Rohulya, O., V.,Fusetti, F., Wagner, M., Albers, S-V. and Arnold J. M. Driessen. (2011). The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. Bacteriology, 193  (17): 4380-4387.

18.    Pantazaki, A., A., Tsolkas, G., P. and Kyriakidis, D.A. (2008). A DING phosphatase in Thermus thermophilus. Amino Acids, 34: 437 – 448.

19.    Berna, A., Bernier, F., Chabriere, E., Perera, T. and Scott, K. (2008). DING proteins; novel members of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom. Biochemistry Cell Biology, 40: 170–175.

20.    Collombet, J.,M., Elias, M., Gotthard, G., Four, E., Renault, F., Joffre, A., Baubichon, D., Rochu, D. and Chabričre, E. (2010). Eukaryotic DING proteins are endogenous: an immunohistological study in mouse tissues. PLoS ONE  e9099, 5 (2): 1-7.

21.    Longeon, A., Peduzzi, J., Barthe´, M. L., Corre, S., Nicolas, J-L. and Guyot, M. (2004). Purification and partial identification of novel antimicrobial protein from marine bacterium  Pseudoalteromonas species strain X153. Marine Biotechnology, 6: 633–641.

22.    Atirah., W.S.N. (2011). Identification and characterization of antimicrobial peptides in Halomonas sp. from Lutjanus erythropterus epidermis. Msc. Thesis. Universiti Teknologi Malaysia, Skudai.

23.    Azemin, A. and Omar, M., S., S. (2014). Detection and activity of bacteriocin produced by Halomonas sp. strain M3. Proceeding of International Postgraduate Conference on Science and Mathematics, 2: 47-58.

24.    Giek Far, C. and Rashid, N. A. (2005). Flavin reductase from Citrobacter freundii A1. Ph.D. Thesis. Universiti Teknologi Malaysia, Skudai.

25.    Chong, K., Joshi, S., Jin, L., T. and Shu-chien, A., C. (2005). Proteomics profiling of epidermal mucus secretion of a cichlid (Symphysodon aequifasciata) demonstrating parental care behaviour. Proteomics, 5: 2251-2258.

26.    Mousavi, S. M., Wilson, G., Raftos, D., Mirzargar, S. S. and Omidbaigi, R. (2011). Antibacterial activities of a new combination of essential oils against marine bacteria. Aquaculture International, 19 (1): 205-214.

27.    Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R. and Lipscombe, R. (2008). Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Animal Proteomic, 8 (5): 1081-1096.

28.    Lewis, A.,P. and Crowther, D. (2005). DING proteins are from Pseudomonas. FEMS Microbiology Letters, 252: 215–222.

29.    Scott, K. and Wu, L. (2005). Functional properties of a recombinant bacterial DING protein: comparison with a homologous human protein. Biochim Biophys Acta, 1744: 234–244.

30.    Ahn, S., Moniot, S., Elias, M., Chabriere, E. and Kim, D. (2007). Structure-function relationships in a bacterial DING protein. FEBS Letters, 581: 3455–3460.

31.    Tan, A.,S. and Worobec, E.,A. (1993). Isolation and characterization of two immunochemically distinct alkaline phosphatases from Pseudomonas aeruginosa. FEMS Microbiology Letters, 106: 281–286.

32.    Ball, G., Durand, E., Lazdunski, A. and Filloux, A. (2002). A novel type II secretion system in Pseudomonas aeruginosa. Molecular Microbiology, 43: 475–485.

33.    Berna, A., Scott, K., Chabriere, E. and Bernier, F. (2009). The DING family of proteins: ubiquitous in eukaryotes, but where are the genes?. Bioessays, 31: 570–580.

34.    Perera, T., Berna, A., Scott, K., Lemaitre-Guillier, C. and Bernier, F. (2008). Proteins related to St. John’s Wort p27SJ, a suppressor of HIV-1 expression, are ubiquitous in plants. Phytochemistry, 69: 865–872.

35.    Zhang, X.,X., Scott, K., Meffin, R. and Rainey, P.,B. (2007). Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25. BMC Microbiology, 7: 114.

36.    Belenky, M., Prasain, J., Kim, H. and Barnes, S. (2003). DING, a genistein target in human breast cancer: a protein without a gene. Nutrition, 133: 2497S–2501.

37.    Riah, O., Dousset, J.,C., Bofill-Cardona, E. and Courriere, P. (2000). Isolation and microsequencing of a novel cotinine receptor. Cellular Molecule Neurobiology, 20: 653–664.

 




Previous                    Content                    Next