Malaysian Journal of Analytical Sciences Vol 19 No 4
(2015): 808 - 814
OPTIMIZATION
ON PRETREATMENT CONDITIONS OF SEAWEED LIQUID WASTE FOR BIOETHANOL PRODUCTION
(Pengoptimuman Kondisi Pra-Rawatan Sisa
Cecair Rumpai Laut untuk Penghasilan Bioetanol)
Nur Zatul
-‘Iffah Zakaria1, Dachyar Arbain1*, Mohd Noor Ahmad2,
Mohd. Irfan Hatim Mohamed Dzahir1
1School
of Bioprocess Engineering,
Universiti Malaysia Perlis,
Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis Malaysia
2Centre of Excellence for Advanced Sensor
Technology (CEASTech),
Universiti
Malaysia Perlis, Pusat Pengajian Jejawi II, Taman Muhibah, 02600 Arau, Perlis,
Malaysia
*Corresponding author: dachyar@unimap.edu.my
Received: 23 November 2014; Accepted: 27 June 2015
Abstract
Seaweed liquid waste (SLW) from a
non-conventional seaweed (Gracilaria sp.) drying process where the
seaweed is ruptured and filter-squeezed has been investigated. The liquid
contains proteins and minerals which potentially pollute the environment if it
is not been properly treated. For that reason, this paper deals with study on
the feasibility of SLW utilization as a feedstock for bioethanol production.
The fermentation of bioethanol production was carried out by Saccharomyces
cerevisiae in which ethanol produced was measured by gas chromatography. In
order to increase its fermentable sugar content, the SLW was treated with
dilute acid. Center composite design of response surface methodology (RSM) had
been used to optimize the sugar content by varying the parameters involved in
the dilute acid pretreatment conditions. These are sulphuric acid concentration
(M), temperature (oC) and seaweed waste concentration (g/ml). It was obtained that the R2 value
reached 0.97 indicating that the model is acceptable. The three parameters
showed p-value less than 0.05 suggesting their significance interactions. The
optimization resulted 25 times improvement of reducing sugar concentration. The
reducing sugar resulting from the optimized pretreatment was later used as
fermentation medium to produce ethanol up to 123.197mg/l.
Keywords: bioethanol,
dilute acid pretreatment, Gracilaria sp., Saccharomyces cerevisiae,
seaweed liquid waste
Abstrak
Sisa cecair rumpai laut (SLW)
hasil daripada proses pengeringan konvensional rumpai laut ( Gracilaria sp.)
di mana rumpai laut dipecah dan diperah-tapis telah di kaji. Cecair ini
mengandungi protein dan mineral-mineral yang berpotensi mencemarkan alam
sekitar sekiranya tidak dirawat dengan betul. Oleh hal yang demikian, kertas
kerja ini berkaitan dengan kajian mengenai kemungkinan penggunaan SLW sebagai
bahan mentah untuk penghasilan bioetanol. Penapaian
penghasilan bioetanol dilakukan oleh Saccharomyces cerevisiae di mana
etanol yang dihasilkan diukur dengan kromatografi gas. Dalam usaha untuk
meningkatkan kandungan gula fermentasi, maka SLW dirawat dengan asid cair. Reka
bentuk komposit berpusat dalam metodologi permukaan sambutan (RSM) digunakan
untuk mengoptimumkan kandungan gula dengan mengubah parameter yang terlibat
dalam keadaan pra-rawatan asid cair. Parameter tersebut adalah kepekatan asid
sulfurik (M), suhu (oC) dan kepekatan sisa rumpai laut (g/ml).
Didapati bahawa nilai R2 mencapai 0.97 yang menunjukkan bahawa model
ini boleh diterima. Tiga parameter menunjukkan nilai-p kurang daripada 0.05
menunjukkan kepentingan interaksi. Pengoptimuman ini memberikan peningkatan 25
kali kepekatan gula penurun. Gula penurun hasil daripada pra-rawatan yang
dioptimumkan kemudiannya digunakan sebagai medium fermentasi untuk menghasilkan
etanol sehingga 123.197mg / l.
Kata kunci: bioetanol, pra-rawatan acid cair, Gracilaria sp.,
Saccharomyces cerevisiae, sisa cecair rumpai laut
References
1. Mansa R.
F., Mansuit H., Fong K. F. and Sipaut C. S. (2013). Review: Pre-treatments and Fermentation of
Seaweed for Bioethanol Production. Developments
in Sustainable Chemical and Bioprocess Technology: 129–136.
2. Kim H.
Ra C. H., and Kim S.K. (2013). Ethanol production from seaweed (Undaria
pinnatifida) using yeast acclimated to specific sugars. Biotechnology and
Bioprocess Engineering 18 (3): 533–537.
3. Hom S.
J. Aasen I. M. and Østgaard K. (2000).
Ethanol production from seaweed extract.
Journal of Industrial Microbiology and Biotechnology 25 (5): 249–254.
4. Wang
X. Liu X. and Wang G. (2011). Two-stage hydrolysis of invasive algal feedstock
for ethanol fermentation. Journal of
Integrative Plant Biology 53 (3): 246–52.
5. Kawa-rygielska
J. and Pietrzak W. (2013). Ethanol fermentation of very high gravity ( VHG )
maize mashes by Saccharomyces cerevisiae with spent brewer’s yeast
supplementation. Biomass and Bioenergy: 1–8.
6. Goh C.
S. and Lee K. T. (2010). A visionary and conceptual macroalgae-based
third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay
for renewable and sustainable development.
Renewable and Sustainable Energy Reviews 14 (2): 842–848.
7. Park J.,
Hong J., Chul H., Geun S., Kim S., Yoon J. and Jin Y. (2012). Use of Gelidium
amansii as a promising resource for bioethanol : A practical approach for
continuous dilute-acid hydrolysis and fermentation. Bioresource Technology 108: 83-88.
8. Karunakaran
S. and Gurusamy R. (2011). Bioethanol Production as Renewable Biofuel from
Rhodopyhtes Feedstock. International Journal of Biological Technology 2
(2): 94–99.
9. Jang J.-S.,
Cho Y., Jeong G.-T. and Kim S.-K. (2012). Optimization of saccharification and
ethanol production by simultaneous saccharification and fermentation (SSF) from
seaweed, Saccharina japonica. Bioprocess
and Biosystems Engineering 35 (1–2): 11–8.
10. Saqib A.
A. N. and Whitney P. J. (2011). Differential behaviour of the dinitrosalicylic
acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and
Bioenergy 35 (11):4748–4750.
11. Wyman C.
E., Decker S. R., Himmel M. E., Brady J. W. and Skopec C. E. (2005). Hydrolysis
of Cellulose and Hemicellulose. Polysaccharides: Structural Diversity and
Functional Versatility: 1–39.
12. Schmidt I.
A. J., Orth R. J. and Franz J. A.
(2004). Hydrolysis of Biomass Material US 6 - 578 - 692,
13. Zheng Y.,
Pan Z., and Zhang R. (2009). Overview of biomass pretreatment for cellulosic
ethanol production. International of
Journal Agricultural & Biological Engineering 2 (3): 51–68.