Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 658 - 662

 

 

 

THE EFFECT OF H2SO4 CONCENTRATION ON THE IONIC CONDUCTIVITY OF LIQUID PMMA OLIGOMER

 

(Kesan Kepekatan H2SO4 Ke Atas Kekonduksian Ionik Cecair PMMA Oligomer)

 

Norashima Kamaluddin1,2*, Famiza Abdul Latif1,2, Chan Chin Han1,2, Ruhani Ibrahim1,2,

Sharil Fadli Mohamad Zamri1,2

 

1Faculty of Applied Sciences,

2Core Frontier Materials and Industry Application, Research Management Institute,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: norashimakamaluddin@yahoo.com

 

 

Received: 25 March 2015 ; Accepted: 11 June 2015

 

 

Abstract

To date gel and film type polymer electrolytes have been widely synthesized due to their wide range of electrical properties. However these types of polymer electrolytes exhibit poor mechanical stability and poor electrode-electrolyte contact hence deprive the overall performance of a battery system. Therefore, in order to indulge the advantages of polymer as electrolyte, a new class of polymer electrolyte was synthesized and investigated. In this study, liquid poly(methyl methacrylate) (PMMA) electrolyte was synthesized using the simplest free radical polymerization technique using benzoyl peroxide as the initiator. At this stage, it was found that this liquid PMMA oligomer (Mw=3000 g/mole) has a potential as electrolyte in electrochemical devices. It was found that an ionic conductivity of ~10-7 S/cm at room temperature can be achieved when only small volume of high molarity of sulfuric acid (H2SO4) was doped in the liquid PMMA oligomer. The properties of this liquid PMMA oligomer were further investigated using Fourier Transform Infrared Spectroscopy (FTIR).

 

Keywords: Conducting polymers, PMMA, doping acid, electrical studies, FTIR

 

Abstrak

Sehingga kini elektrolit polimer dalam keadaan gel dan filem telah disintesis secara meluas kerana mempunyai pelbagai sifat elektrikal. Walaubagaimanapun, elektrolit polimer ini menunjukkan kestabilan mekanikal yang lemah dan sentuhan antara elektrod dan elektrolit yang rendah sekaligus menurunkan prestasi sistem bateri. Oleh yang demikian, untuk mendapatkan faedah polimer sebagai elektrolit, satu kelas polimer elektrolit yang baru telah disintesis dan dikaji. Kajian ini melibatkan kaedah sintesis elektrolit poli(metil metakrilat) (PMMA) berasakan cecair melalui teknik pempolimeran radikal bebas menggunakan benzoil peroksida sebagai pencetus. Didapati bahawa cecair PMMA oligomer ini (Mw=3000 g/mol) mempunyai potensi sebagai elektrolit di dalam alatan elektrokimia. Kekonduksian ionik ~10-7 S/cm pada suhu bilik telah dicapai apabila hanya isipadu kecil asid sulfurik (H2SO4) yang berkepekatan tinggi terdop ke dalam cecair PMMA oligomer ini. Sifat cecair PMMA oligomer ini telah dikaji menggunakan Fourier Transform Inframerah Spektroskopi (FTIR).

 

Kata kunci: konduktif polimer, PMMA, asid doping, kajian elektrikal, FTIR

 

References

1.       Saikia, D. and Kumar, A. (2005). Ionic transport in P(VDF-HFP)–PMMA–LiCF3SO3–(PC + DEC)–SiO2 composite gel polymer electrolyte. European Polymer Journal, 41: 563-568.

2.       Kumar, R., Sharma, J. P. and Sekhon, S. S. (2005). FTIR study of ion dissociation in PMMA based gel electrolytes containing ammonium triflate: Role of dielectric constant of solvent. European Polymer Journal, 41: 2718-2725.

3.       Rajendran, S., Bama, V. S. and Prabhu, M. R. (2010).  Effect of lithium salt concentration in PVAc/PMMA-based gel polymer electrolytes. Ionics, 16: 27-32.

4.       Idris, R., Glasse, M. D., Latham, R. J., Linford, R. G. and Schlindwein, W. S. (2001). Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries. Journal of Power Sources, 94l: 206-211.

5.       Idris, R., Mohd, N. H. N. and Arjan, N. M. (2007). Preparation and characterization of the polymer electrolyte system ENR50/PVC/EC/PC/LiN(CF3SO2)2 for electrochemical device applications. Ionics, 13: 227-230.

6.       Hou, X. and Kok, S. S. (2000). Mechanical properties and ionic conductivities of plasticized polymer electrolytes based on ABS/PMMA blends. Polymer, 41: 8689-8696.

7.       Zhou, S. and Fang, S. (2007). High ionic conductivity of all-solid polymer electrolytes based on polyorganophosphazenes. European Polymer Journal, 43: 3695-3700.

8.       Appetecchi, G. B., Croce, F. And Scrosati, B. (1995). Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimia Acta, 40(8): 991-997.

9.       Rikukawa, M. and Sanui, K. (2000). Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci., 25: 1463-1502.

10.    Arun Kumar, D., Selvasekarapandian, S., Baskaran, R., Savitha, T. and Nithya, H. (2012). Thermal vibration and AC impedance studies on proton conducting polymer electrolytes based on poly(vinyl acetate). Journal of Non-Crstalline Solids, 358: 531-536.

11.    Nik Aziz, N. A., Idris, N. K. And Isa, M. I. N. (2010). Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: Conductivity and ionic transport studies. Journal of the Physical Sciences, 5(6): 748-753.

12.    Pu, H. and Wang, D. (2006). Studies on proton conductivity of polyimide/H3PO4/imidazole blends. Electrochimia Acta, 51: 5612-5617.

13.    Latif, F. , Aziz, M., Kartun, N., Ali, A. M. M. and Yahya, M. Z. (2006).  The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. Journal of Power Sources, 159: 1401-1404.

14.    Uma, T., Mahalingam, T. and Stimming, U. (2005). Conductivity studies on poly(methyl methacrylate)–Li2SO4 polymer electrolyte systems. Materials Chemistry and Physics, 90: 245-249.

 




Previous                    Content                    Next