Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 491 - 506

 

 

 

FOUR SPECTROPHOTOMETRIC METHODS FOR SIMULTANEOUS DETERMINATION OF CARBAMAZEPINE AND LAMOTRIGINE IN BINARY MIXTURES AND URINE SAMPLES

 

(Penentuan Serentak Karbamazapin dan Lamotrigin Di Dalam Campuran Perduaan Dan Sampel Urin Melalui Empat Kaedah Spektrofotometrik)

 

Fadhil M. Najib*, Muhammad S. Mustafa

 

Chemistry Department,
Faculty of Science and Science Education,

Sulaimani University, Kurdistan Region, Iraq

 

*Corresponding author: fadhil.najib@yahoo.com

 

 

Abstract

In this work four different UV-spectrophotometric methods are described for simultaneous determination of antiepileptic drugs; carbamazepine (CBZ) and lamotrigine (LMT) in binary synthetic mixtures and urine samples without separation. First method was by solving the two simultaneous equations (SEQ) based on total absorbance according to Beer’s law.  Second was Dual wavelength (DWSP) method; Absorbance difference between 304 and 313 nm was measureable for CBZ but  was zero for LMT. Likewise the absorbance difference between 282 and 290 nm was significant for LMT, and zero for CBZ. Third involved the use of zero- crossing first derivative method (ZCDSP) using the amplitudes at 308.9 and 286.6 nm for CBZ and LMT respectively. Ratio Derivative Spectrophotometry (RDSP) was the last.  Here, the absorbance at different concentrations of CBZ or LMT, was divided, wavelength by wavelength, by the absorbance of a divisor, which was LMT standard for the analyte CBZ, and vice versa for LMT, (Divisor=2.0΅g.mL-1) in both cases. The amplitude of the derivative ratio spectra at 290 nm with wavelength interval (Δλ=6.0nm) and 328 nm (Δλ=4.0 nm) were selected for the determination of CBZ and LMT respectively.  CBZ and LMT were simultaneously determined in synthetic mixtures and urine samples by the four methods giving good linearity, r2 ranged between 0.9990 - 0.9997. Detection Limit (D.L) was mostly less than 0.4΅g.mL-1,while in case of ZCDSP and RDSP were between 0.01-0.2 ΅g.mL-1  with wider linearity range (1-50 for CBZ and 1 - 80΅g.mL- 1 for LMT). A slightly lower sensitivity was observed when suppressing solution for urine analysis was used to remove interferences. The recoveries of CBZ and LMT in samples of urine of a healthy person spiked with the drugs and using urine of a healthy person as a blank were, in most cases, around (101.0% - 103.33%) and (98.33% - 102.16%) with RSD 3.61 and 3.63% for CBZ and LMT respectively. The recoveries using suppressing solution were (101.66% - 105.41%) and (94.56% - 101.0%) with RSD 2.43 and 3.62% for CBZ and LMT respectively. Statistical comparison of the results with the mixture of standard solutions using F, and t-tests showed no significant differences between each of the four methods at 95% C.L. The proposed methods were successfully applied for the determination of CBZ and LMT in binary mixtures and urine samples.

 

Keywords: dual wave length, zero crossing derivative, ratio derivative spectrophotometry, tegretol and lamotigine determination

 

Abstrak

Dalam kajian ini empat kaedah spektrofotometri UV yang berbeza dijelaskan terhadap penentuan serentak dadah antiepilepsi; karbamazepin (CBZ) dan lamotrigin (LMT) dalam campuran sintetik perduaan dan sampel urin tanpa pemisahan. Kaedah pertama adalah dengan menyelesaikan dua persamaan serentak (SEQ) berdasarkan jumlah serapan menurut hukum Beer. Kedua adalah kaedah panjang gelombang dual (DWSP); Perbezaan serapan diukur antara 304 dan 313 nm terhadap CBZ manakala sifar bagi LMT. Begitu juga perbezaan serapan antara 282 dan 290 nm adalah penting untuk LMT dan set sifar untuk CBZ. Kaedah ketiga melibatkan penggunaan kaedah lintasan sifar terbitan pertama (ZCDSP) pada amplitud masing – masing 308.9 dan 286.6 nm untuk CBZ dan LMT. Kaedah spektrofotometri nisbah terbitan (RDSP) adalah yang terakhir. Serapan pada kepekatan yang berbeza CBZ atau LMT mengikut panjang gelombang, oleh serapan pembahagi, dimana larutan LMT adalah piawai untuk analit CBZ analit, dan sebaliknya. (Kepekatan Pembahagi = 2.0μg.mL-1) dalam kedua-dua kes. Amplitud nisbah spektrum terbitan pada 290 nm dengan selang jarak gelombang (Δλ = 6.0nm) dan 328 nm (Δλ = 4.0 nm) masing – masing telah dipilih untuk penentuan CBZ dan LMT. CBZ dan LMT telah ditentukan secara serentak di dalam campuran sintetik perduaan dan sampel urin oleh kesemua kaedah memberi kelinearan baik, r2 adalah antara 0.9990 - 0.9997. Had pengesanan adalah kurang daripada 0.4μg.mL-1, manakala bagi kaedah lintasan sifar terbitan pertama dan spektrofotometri nisbah terbitan adalah di antara 0.01 – 0.2 μg.mL-1 dengan julat kelinearan lebih besar (1-50 bagi CBZ dan 1 - 80μg.mL-1 untuk LMT). Nilai sensitiviti diperhatikan lebih rendah apabila larutan tekanan digunakan terhadap analisis sampel urin untuk menghilangkan gangguan. Perolehan semula di dalam sampel urin bagi orang yang sihat yang dipaku bersama dadah CBZ dan LMT dan larutan pengosong dalam kebanyakan kes didapati  pada julat (101.0% - 103.33%) dan (98.33% - 102.16%) dengan RSD 3.61 dan 3.63% masing – masing terhadap CBZ dan LMT. Perolehan semula menggunakan larutan tekanan adalah (101.66% - 105.41%) dan (94,56% - 101.0%) dengan RSD 2.43 dan 3.62% masing – masing terhadap CBZ dan LMT. Perbandingan statistik hasil kajian menggunakan ujian F dan ujian-t terhadap larutan piawai menunjukkan tidak ada perbezaan yang signifikan antara setiap satu daripada empat kaedah pada 95%. Kaedah yang dicadangkan telah berjaya diggunakan terhadap penentuan campuran perduaan CBZ dan LMT dan sampel urin.

 

Kata kunci: panjang gelombang dual, kaedah lintasan sifar terbitan pertama, kaedah spektrofotometri nisbah terbitan, penentuan tegretol dan lamotigine

 

References

1.       Kalanur S. S., Seetharamappa J.( 2010). Elechtrochemical oxidation of bioxidative carbamazepine and its interaction with DNA. Analytical Letters. 43: 618–630.

2.       Greiner-sosanko E., Lower D.R., Virji M.A., Kraswski M.D. ( 2007). Simultaneous determination of lamotrigine, zonisamide, and carbamazepine in human plasma by high-performance liquid chromatography. Biomed. Chromatogrphy. 2: 225–228.

3.       El-Enany N.M., El-Sherbiny D.T., Abdelal A.A., Belal F.F.( 2010). Validated spectrophotometric method for determination of lamotrigine in tablets and human plasma through derivatization with o-phthalaldehyde.  J. Fluorescence. 20: 463–472.

4.       Mishra B., Ary N., Tiwari S. (2010). Investigation of formulation variables affecting the properties of lamotrigine nanosuspension using fractional factorial design. J. Daru. 18: 1-8.

5.       Shucho Wu, Wei Xu, Qamar S., Bingcheng Y., Deying C., Yan Z., Lanjuan L. (2012).Ion chromatography combined with online electrochemical derivatization and fluorescence detection for the determination of carbamazepine in human plasma. Talanta. 101: 541-545.

6.       Rao S. K., Belorkar N.(2010). Development and validation of a specific indicating liquid chromatographic method for carbamazepine in bulk and pharmaceutical dosage forms. Journal of Advanced Pharmaceutical Research. 1: 36-47.

7.       Mcillin A. G., Juenke M. J., Tso G., Dasgupta A.(2010). Estimation of carbamazepine and carbamazepine-10,11-epoxide concentrations in plasma using mathematical equations generated with two carbamazepine immunoassays. American J. for Clinical Pathology. 133: 728-736.

8.       Mcillin A. G., Juenke J. M., Johnson M. J., Dasgupta A. (2011). Discordant carbamazepine values between two immunoassays: carbamazepine values determined by ADVIA centaur correlate better with those determined by LC-MS/MS than PETINIA assay. Journal of Clinical Laboratory Analysis; 25: 212-216.

9.       Rajendraprasad N., Basavaiah K., Vinay K.B. (2010). Micro and nanogram determination of lamotrigine in pharmaceuticals by visible spectrophotometry using bromophenol blue. Indian J. of Chemical Technology 17: 220–228.

10.    Youssef N.F., Taha E.A. (2007). Development and validation of spectrophotometric, TLC and HPLC methods for the determination of  lamotrigine  in presence of its impurity. J. Chemical and Pharmaceutical Bulletin; 55: 541–545.

11.    Biddlecombe R.A., Dean K.L., Smith C.D.Jeal S.C.(1990). Validation of a radiommunoassay for the determination of human plasma concentrations of lamotrigine. J. Pharmaceutical and Biomedical Analysis.; 8: 691– 694.

12.    Patel A., Kataria M.( 2012). RP-HPLC method development and validation of lamotrigine in tablet dosage form.  International Journal of Advanced Research in Pharmaceutical and Bio Sciences; 1: 95-102.

13.    Al-Hadithi N., Saad B., Grote M.(2011). A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen and carbamazepine in river water.  J. Microchim Acta.172: 31-37.

14.    Bhaskara Reddy T. V., Ramu G., Babu A.B., Rambabu C.(2013). Development and validation of HPLC method for the estimation of lamotrigine in bulk and pharmaceutical formulations. J. of Chemistry: 1-4.

15.    Rivas N., Zarzuelo A., Lopez F.G.(2010). Optimisation of high-efficiency liquid chromatography technique for measuring lamotrigine in human plasma. Farmacia Hospitalaria. 34: 85-89.

16.    Fortuna A., Sousa J., Alves G., Falcao A., Soares-da-Silva P.(2010). Development and validation of an HPLC-UV method for the simultaneous quantification of  carbamazepine, oxcarbazepine, eslicarbazepine acetate and their main metabolites in human plasma. Ana. Bioanal. Chem. 397: 1605-1615. 

17.    Mashayekhi H.A., Abroomand-Azar P., Saber-Tehrani M., Husain S.W.(2010). Rapid determination of carbamazepine in human urine, plasma samples and water using DLLME followed by RP_LC. Chromatographia. 71: 517-521.

18.    Rani S.,Malik A.K., Singh B. (2012). Novel micro-extraction by packed sorbent procedure for the liquid chromatographic analysis of antiepileptic drugs in human plasma and urine. J. Sep. Sci. 35: 359-366.

19.    Sharma M.C., Sharma S. (2011). Validated densitometric method for the quantification of lamotrigine in dosage form. International Journal of Pharm. Tech. Research 3: 1174-1178.

20.    Paw B., Matysiak J., Kowalczuk D. (2011).  Development and validation of a capillary electrophoresis method for the determination of lamotrigine in pharmaceutical dosage form. Annales. 24: 9-14.

21.    Burgoa Clavo M. E., Renedo, O. M., Arcos Martinez .M. J.(2005). Optimization of the experimental parameters in the determination of lamotrigine by adsorptive stripping voltammetry. J. Analytical Chimica Acta 549: 74-80.

22.    Dominguez-Renedo O., Burgoa Calvo M.E., Arcos Martinez M. (2008). Determination of lamotrigine in pharmaceutical preparations by adsorptive stripping voltammerty using screen printed electrodes. J. Sensors. 8: 4201– 4212.

23.    Garcia-Garcia M.A., Dominguez-Renedo O., Alonso-Lomillo A., Arcos-Martinez M.J.(2009).  Electrochemical methods of carbamazepine determination.  Sensor Letters. 7: 586-591.

24.    Atkins S., Sevilla J.M., Blazquez M., Pineda T., Gonalez-Rodriguez J. (2010). Electrochemical Behaviour of carbamazepine and dimethylformamide using glassy carbon electrodes and microelectrodes. Electroanalysis. 22: 2961-2966.

25.    Veiga A., Drdio A., Carvallo Palac A.J., Teixeira D. M., Teixeira J. G.(2010). Uitra-sensitive voltammetric sensor for trace analysis of carbamazepine. J. Analytical Chimica. 674: 182–189.

26.    Khim Chng E. L., Pumera M.(2011).  Nanographitic impurities are responsible for electrocatalytic activity of carbon nanaotubes towards oxidation of carbamazepine. J. Electrochemistry Communications 13: 781-784.

27.    Kalanur S.S., Jaldappagari S., Balakrishnan S. (2011). Enhanced electrochemical response of carbamazepine at a nano-structured sensing film of fullerene-C60 and its analytical applications. Electrochimica Acta. 56: 5295-5301.

28.    Liu Li-Hong, Duan Cheng-qian, Gao Zuo-Ning.(2012). Electrochemical behavior and electrochemical determination of carbamazepine at an ionic liquid modified carbon paste electrode in the presence of sodium dodecyl sulfate. Journal of Serbian Chemical Society. 77: 483-496.

29.    Gupta V.K., Singh A.k., Gupta B.(2007). Development of membrane electrodes for selective determination of some antiepileptic drugs in pharmaceuticals, plasma and urine. Analytical and Bioanalytical Chemistry. 389: 2019-2028.

30.    Ulu Tatar S.(2006). Determination of carbamazepine in pharmaceutical preparations using high-performance liquid chromatography and derivative spectrophotometry. Turkish  Journal Pharmaceutical Sciences. 3: 123-139.

31.    Abdulrahman S.A.M., Basavaiah K., Revanasiddappa H.D., Vinay K.B.(2010). Use of eco-friendly brominating agent for the spectrophotometric determination of carbamazepine in pharmaceutical formulations. Malay J. Pharm. Sci. 8: 1-17.

32.    Frag E.A.Z., Zayed M.A., Omar M.M., Elashery S.E.A.,Mohamed G.G.(2012). Spectrophotometric Determination of Carbamazepine in Pure and Pharmaceutical Preparations; Arabian Journal of Chemistry 5: 375-382.

33.    Lee H. Sang, Li Ming, Suh K. J.(2003). Determination of carbamazepine by chemiluminescence detection using chemically prepared Tris(2,2׳-bipyridine)-ruthenium (ӀӀӀ) as oxidant. Japan, Analytical Sciences. 19: 903–910.

34.    Najib F.M., Aziz K.H.H. (2013). Spectrophotometric determination of lamotrigine in pharamaceutical preparations and urine samples using bromothymol blue and bromrophenol blue. Malysian Journal of Analytical Sciences 17: 310-325.

35.    Escandar G.M., Gomez D.G., Mansilla A.E., De la Pena A.M., Goicoechea H.C.(2004). Determination of carbamazepine in serum and pharmaceutical preparations using immobilization on a nylon support and fluorescence detection. Anal. Chim. Acta, 506: 161-170.

36.    Revanasiddappa H.D., Feepakumari H.N., Mallegowda S.M. (2011). Development and validation of indirect spectrophotmetric methods for lamotrigine in pure and the tablet dosage forms. Analele Universitatii din Bucuresti-Chimie (serienoua). 20: 49-55.

37.    Alizadeh N., Khakinahad R., Jabbari A. (2008). Spectrophotometric determination of lamotrigine in pharmaceutical preparations and urine by charge-transfer complexation. Pharmazie. 63: 791–795.

38.    Vinay K.B., Revanasiddappa H.D., Rajendraprasad N. (2009). Development and validation of spectrophotometric methods for the sensitive and selective determination of lamotrigine in pharmaceuticals using bromocresol purple. J. of Food and Drug Analysis. 17: 424–433..

39.    Rajendraprasad N., Basavaiah K., Vinay K.B.(2010). Sensitive spectrophotometric determination of lamotrigine in bulk drug and pharmaceutical formulations using bromocresol green. Ecl. Quim., Sδo paulo. 35: 55–66.

40.    Ulu T. S.(2011). Sensitive and simple spectrophotometric method for the determination of lamotrigine in pure and pharmaceutical preparations of charge-transfer complex. Rev. Chim. 62: 261-264.

41.    Vinay K.B., Revanasiddappa H.D., Rajendraprasad N., Basavaiah K.. (2011). Sensitive, selective and extraction-free spectrophotometric determination of lamotrigine in pharmaceuticals using two sulphonthalein dyes. Thai. J. Pharm. 35: 65-76.

42.    Chandan R.S., Gurupadayya, Indupriya M., (2013). Quantitative Determination of lamotrigine by gas chromatography using ethyl chloroformate as a derivatizing reagent in pure and pharmaceutical preparation; Indo American Journal of Pharmaceutial Research. 3: 8284-8289.

43.    Abolfathi Z., Belanger P.M., Gilbert M., Rouleau JR.(1992). Improved high-performance liquid chromatographic assasy for the stereoselective determination of mexiletine in plasma. J. Chromatography. 2: 579: 366.

44.    Ekrami E., Okazi M. (2010). Analysis of dye concentrations in binary dye solutions using derivative spectrophotometric techniques. World Applied Sciences Journal 11: 1025-1034.

45.    Amin G., Chapla B., Pandya A., Kakadiya Dr. J., Baria D.(2010). Development and validation of dual wavelength uv spectrophotometric method for simultaneous estimation of tadalafil and dapoxetine hydrochloride in their combined tablet dosage form. International Journal of Pharmaceutical Research and Bio-scince 2: 247-255.

46.    Dashrath H.P., Dipti B.P., Patel Shree S.k. (2012). Development and validation of dual wavelength spectrophotometric method for simultaneous estimation of cefixime trihydrate and sulbactam sodium in combined dosage form. International Journal of Universal of pharmacy and Life Science. 2: 62-71.

47.    Al-Shaalan N. H.(2010). Determination of phenylephrine hydrochloride and chlorpheniramine maleate in binary mixture using chemometric-assisted spectrophotometric and high-performance liquid chromatographic-UV methods. Journal of Saudi Chemical Society. 14: 15-21.

48.    Relan G.R., Dubey A.N., Vaidyanathan S. (1995). A ratio derivative spectrophotometric method for the simultaneous determination of uranium and plutonium. Journal of Radioanalytical and Nuclear Chemistry. 204: 15-22.

49.    Farouk M., Abd El-Aziz L., El-Gindy A.E., Shokry E.(2011). Validated methods for determination of yohimbine hydrochloride in the presence of its degradation products. Bulletin of Faculty of Pharmacy, Cairo University. 49: 67-79.

50.    Darwish H.W., Hassan S.A., Salem M.Y., El-Zeiny B.A.(2011). Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of amlodipine and atorvastatin. Spectrochimica Acta Part A. 83: 140-148.

51.    Patel S. A., Patel N. J. (2011).  Development and validation of dual wavelength spectrophotometric method for simultaneous estimation of cefixime trihydrate and ofloxacin in tablet dosage form. International Research Journal of Pharmacy. 2: 145-148.                                                                                 

 

Previous                    Content                    Next