Malaysian
Journal of Analytical Sciences Vol 18 No 3 (2014): 572 - 583
THE INFLUENCE OF MODIFIED SODIUM MONTMORILLONITE AS
FILLER ON THE PERFORMANCE OF GLASS POLYALKENOATE CEMENT
(Kesan Natrium Montmorilonit Terubahsuai Sebagai Bahan Pengisi Dalam Meningkatkan
Prestasi Simen Kaca Polialkenoat)
Nur’Izzah Md Nasir1, Norhazlin Zainuddin1*,
Wan Md Zin Wan Yunus2, and Khamirul Amin Matori3
1Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia, 43300 Serdang, Selangor,
Malaysia
2Department of
Chemistry, Centre for Defense Foundation Studies,
National Defence Universiti Malaysia, Sungai Besi
Camp, Kuala Lumpur, Malaysia
3Department of
Physics, Faculty of Science,
Universiti Putra Malaysia, 43300 Serdang, Selangor,
Malaysia.
*Corresponding author: norhazlin@upm.edu.my
Abstract
Modification of
sodium montmorillonite (Na-MMT) to aluminium montmorillonite (Al-MMT) and
octadecylamine montmorillonite (ODA-MMT) was done by ion exchange process.
These MMTs were added as filler to glass polyalkenoate cement(GPC) formulation.
The compressive strength and setting reaction of the GPCs were studied.
Aluminosilicate glass powder with polyacrylic acid, water and MMT were mixed
together with weight ratio of 5:1:1:(1.5wt% powder). The setting reaction was studied
from FTIR by monitoring the conversion of COOH in polyacrylic acid to crosslink
with metal ions from the glass to form COO-M+ at
different aging time. The addition of Al-MMT slightly sped up the setting
reaction of GPCs as early as 3 minutes and recorded significant increment in
compressive strength at early aging time. While GPC+ODA-MMT only showed
increment in compressive strength at early aging time. However, GPC+Na-MMT had
shown the slowest performance in GPCs setting reaction and lowest value of the
compressive strength. Although the compressive strength for these GPCs was
different at early aging time, all cements recorded almost similar compressive
strength at day 28. The study highlighted the potential of modified Na-MMT as
filler to enhance the performance of GPCs as posterior filling material.
Keywords: sodium montmorillonite,
montmorillonite, glass polyalkenoate cement, aluminosilicate glass, compressive
strength
Abstrak
Pengubahsuaian
terhadap natrium montmorilonit (Na-MMT) kepada aluminium montmorilonit (Al-MMT)
dan oktadesilamin montmorilonit (ODA-MMT) dilakukan melalui proses pertukaran
ion. MMT ini ditambahkan sebagai pengisi kepada formulasi simen kaca
polialkenoat (GPC). Kekuatan mampatan dan tindak balas pengesetan bagi GPC
dikaji. Serbuk kaca aluminosilikat dengan asid poliakrilik, air dan MMT
dicampur dengan nisbah berat 5:1:1:(1.5 wt% serbuk). Tindak balas pengesetan
dikaji melalui FTIR dengan memerhatikan penukaran COOH dalam asid poliakrilik
untuk rangkai silang dengan ion logam daripada kaca untuk menghasilkan COO-M+
pada masa penuaan yang berbeza. Penambahan Al-MMT meningkatkan sedikit tindak
balas pengesetan GPCs seawal 3 minit dan merekodkan peningkatan yang ketara
dalam kekuatan mampatan pada awal masa penuaan. Manakala GPC+ODA-MMT hanya
menunjukkan kesan pada ujian kekuatan mampatan di mana ia juga menunjukan
peningkatan yang ketara pada awal masa penuaan. Walau bagaimanapun, GPC+Na-MMT
telah menunjukkan prestasi paling perlahan dalam tindak balas pengesetan GPCs
dan kekuatan mampatan. Walaupun kekuatan mampatan bagi semua jenis GPC sedikit
berbeza pada awal masa penuaan, semua simen merekodkan kekuatan mampatan yang
hampir sama pada hari ke 28. Kajian ini menumpukan kepada potensi Na-MMT
terubahsuai sebagai pengisi untuk meningkatkan prestasi GPC sebagai bahan
penampal gigi.
Kata kunci: natrium
montmorilonit, montmorilonit, simen kaca polialkenoat, kaca aluminosilikat,
kekuatan mampatan
References
1.
Nicholson,
J. W. (1998). Chemistry of Glass-Ionomer Cements: a review. Biomaterials,
19: 485–494.
2.
Kobayashi, M., Kon, M.,
Miyai, K. & Asaoka, K. (2000). Strengthening of Glass-Ionomer Cement by
compounding Short Fibres with CaO-P2O5-SiO2-Al2O3
Glass. Biomaterials, 21:
2051–2058.
3.
Ruddell, D.E., Maloney,
M.M., & Thompson, J.Y. (2002). Effect of Novel Filler Particles on the
Mechanical and Wear Properties of Dental Composites. Dental Materials , 18: 72–80.
4.
Lucas, M.E., Arita, K.
& Nishino, M. (2003). Toughness, Bonding and Fluoride-Release Properties of
Hydroxyapatite-added Glass Ionomer Cement. Biomaterials , 24: 3787–3794.
5.
Gu, Y.W., Yap, A.U.J.,
Cheang, P., Koh, Y.L. & Khor, K.A. (2005). Development of Zirconia-Glass
Ionomer Cement Composites. Journal of Non Crystalline Solids , 351: 508–514.
6.
Dowling, A.H.,
Stamboulis, A. & Fleming, G.J.P. (2006). The Influence of Montmorillonite
Clay Reinforcement on the Performance of a Glass Ionomer Restorative. Journal
of Dentistry , 34:
802–810.
7.
Fornes,
T.D. & Paul, D.R. (2003). Formation and Properties of Nylon 6
Nanocomposite. Polimeros, 13:212-217.
Available from: http://www.redalyc.org/pdf/470/47013403.pdf [Accessed 21 February 2010]
8.
Zhu, J., Wang, T., Zhu,
R., Ge, F., Wei, J., Yuan, P. & He, H.P. (2011). Novel Polymer/Surfactant
Modified Montmorillonite Hybrids and the Implications for the Treatment of
Hydrophobic Organic Compounds in Wastewaters. Applied Clay Science, 51: 317–322.
9.
Zhou, Q., He, H.P.,
Ray, L.F. & Yunfei, (2007). Adsorption of p-Nitrophenol on Mono-, Di-, and
Trialkyl Surfactant-Intercalated Organoclays: A Comparative Study. Journal
Physical Chemistry, 111:
7487–7493.
10.
Zaghouane-Boudiaf, H. & Boutahala, M. (2011).
Preparation and Characterization of Organo-Montmorillonites. Application in
Adsorption of the 2,4,5-Trichlorophenol from Aqueous Solution. Advanced
Powder Technology, 22: 735–740.
11.
Moaaz, K.S., Komarneni,
S., Cho, Y., Lim, T., Shahien, M.G., Khalil, A.A. & Abd El-Gaid, I.M.
(2011). Organosilicas and Organo-Clay Minerals as Sorbents for Toluene. Applied
Clay Science, 52: 184–189.
12.
Dowling, A.H. & Fleming, G.J.P. (2007). The Impact of Montmorillonite Clay Addition on the In Vitro Wear
Resistance of a Glass-Ionomer Restorative. Journal of Dentistry, 35: 309–317.
13.
Griffin, S.G. & Hill, R.G. (2000).
Influence of glass composition on the Properties of Glass Polyalkenoate
Cements. Part II: Influence of Phosphate Content. Biomaterials , 21: 400.
14.
Genebra,
(1986). International Organization for Standardization. ISO7489. Dental
glass polyalkenoate cements.
15.
Mallmann, A., Ataíde, J.C.O., Amoedo, R., Rocha, P.V. & Jacques, L.B.
(2007). Compressive Strength of Glass Ionomer Cements using Different Specimen
Dimensions. Brazillian Oral Restorative,
21: 204-208. Available from: http://dx.doi.org/10.1590/S1806-83242007000300003,
[Accessed 18 july 2014]
16.
Matsuya, S., Maeda, T. & Ohta, M. (1996). IR and NMR Analyses of Hardening and Maturation of Glass-ionomer
Cement. Journal of Dentistry Restorative, 75(12): 1920–1927.
17.
De Maeyer, E.A.P., Verbeeck, R.M.H. & Vercruysse, C.W.J. (1998). Reactivity of Fluoride-containing Calcium
Aluminosilicate Glasses used in Dental Glass-ionomer Cements. Journal of
Dentistry Restorative, 77 (12): 2005–2011.
18.
De Barra, E. &
Hill, R.G. (1998). Influence of Alkali Metal Ions on the Fracture Properties of
Glass Polyalkenoate (Ionomer) Cements. Biomaterials , 19: 495–502.
19.
Bujdák, J. and
Slosiariková, H. (1992). The Reaction of
Montmorillonite with Octadecylamine in Solid and Melted State. Applied Clay
Science , 7: 263–269.
20.
Francis
Thoo, V. W., Zainuddin, N., Matori, K. A. & Abdullah, S. A. (2013). Studies
on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement
Production. Advances in Materials Science
and Engineering, 2013: 1-6.