Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 572 - 583

 

 

 

THE INFLUENCE OF MODIFIED SODIUM MONTMORILLONITE AS FILLER ON THE PERFORMANCE OF GLASS POLYALKENOATE CEMENT

 

(Kesan Natrium Montmorilonit Terubahsuai Sebagai Bahan Pengisi Dalam Meningkatkan Prestasi Simen Kaca Polialkenoat)

 

Nur’Izzah Md Nasir1, Norhazlin Zainuddin1*, Wan Md Zin Wan Yunus2, and Khamirul Amin Matori3

 

1Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia

2Department of Chemistry, Centre for Defense Foundation Studies,

National Defence Universiti Malaysia, Sungai Besi Camp, Kuala Lumpur, Malaysia

3Department of Physics, Faculty of Science,

Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia.

 

*Corresponding author: norhazlin@upm.edu.my

 

 

Abstract

Modification of sodium montmorillonite (Na-MMT) to aluminium montmorillonite (Al-MMT) and octadecylamine montmorillonite (ODA-MMT) was done by ion exchange process. These MMTs were added as filler to glass polyalkenoate cement(GPC) formulation. The compressive strength and setting reaction of the GPCs were studied. Aluminosilicate glass powder with polyacrylic acid, water and MMT were mixed together with weight ratio of 5:1:1:(1.5wt% powder). The setting reaction was studied from FTIR by monitoring the conversion of COOH in polyacrylic acid to crosslink with metal ions from the glass to form COO-M+ at different aging time. The addition of Al-MMT slightly sped up the setting reaction of GPCs as early as 3 minutes and recorded significant increment in compressive strength at early aging time. While GPC+ODA-MMT only showed increment in compressive strength at early aging time. However, GPC+Na-MMT had shown the slowest performance in GPCs setting reaction and lowest value of the compressive strength. Although the compressive strength for these GPCs was different at early aging time, all cements recorded almost similar compressive strength at day 28. The study highlighted the potential of modified Na-MMT as filler to enhance the performance of GPCs as posterior filling material.

 

Keywords:            sodium montmorillonite, montmorillonite, glass polyalkenoate cement, aluminosilicate glass, compressive strength

 

Abstrak

Pengubahsuaian terhadap natrium montmorilonit (Na-MMT) kepada aluminium montmorilonit (Al-MMT) dan oktadesilamin montmorilonit (ODA-MMT) dilakukan melalui proses pertukaran ion. MMT ini ditambahkan sebagai pengisi kepada formulasi simen kaca polialkenoat (GPC). Kekuatan mampatan dan tindak balas pengesetan bagi GPC dikaji. Serbuk kaca aluminosilikat dengan asid poliakrilik, air dan MMT dicampur dengan nisbah berat 5:1:1:(1.5 wt% serbuk). Tindak balas pengesetan dikaji melalui FTIR dengan memerhatikan penukaran COOH dalam asid poliakrilik untuk rangkai silang dengan ion logam daripada kaca untuk menghasilkan COO-M+ pada masa penuaan yang berbeza. Penambahan Al-MMT meningkatkan sedikit tindak balas pengesetan GPCs seawal 3 minit dan merekodkan peningkatan yang ketara dalam kekuatan mampatan pada awal masa penuaan. Manakala GPC+ODA-MMT hanya menunjukkan kesan pada ujian kekuatan mampatan di mana ia juga menunjukan peningkatan yang ketara pada awal masa penuaan. Walau bagaimanapun, GPC+Na-MMT telah menunjukkan prestasi paling perlahan dalam tindak balas pengesetan GPCs dan kekuatan mampatan. Walaupun kekuatan mampatan bagi semua jenis GPC sedikit berbeza pada awal masa penuaan, semua simen merekodkan kekuatan mampatan yang hampir sama pada hari ke 28. Kajian ini menumpukan kepada potensi Na-MMT terubahsuai sebagai pengisi untuk meningkatkan prestasi GPC sebagai bahan penampal gigi.

 

Kata kunci: natrium montmorilonit, montmorilonit, simen kaca polialkenoat, kaca aluminosilikat, kekuatan mampatan

 

References

1.       Nicholson, J. W. (1998). Chemistry of Glass-Ionomer Cements: a review. Biomaterials, 19: 485–494.

2.       Kobayashi, M., Kon, M., Miyai, K. & Asaoka, K. (2000). Strengthening of Glass-Ionomer Cement by compounding Short Fibres with CaO-P2O5-SiO2-Al2O3 Glass. Biomaterials, 21: 2051–2058.

3.       Ruddell, D.E., Maloney, M.M., & Thompson, J.Y. (2002). Effect of Novel Filler Particles on the Mechanical and Wear Properties of Dental Composites. Dental Materials , 18: 72–80.

4.       Lucas, M.E., Arita, K. & Nishino, M. (2003). Toughness, Bonding and Fluoride-Release Properties of Hydroxyapatite-added Glass Ionomer Cement. Biomaterials , 24: 3787–3794.

5.       Gu, Y.W., Yap, A.U.J., Cheang, P., Koh, Y.L. & Khor, K.A. (2005). Development of Zirconia-Glass Ionomer Cement Composites. Journal of Non Crystalline Solids , 351: 508–514.

6.       Dowling, A.H., Stamboulis, A. & Fleming, G.J.P. (2006). The Influence of Montmorillonite Clay Reinforcement on the Performance of a Glass Ionomer Restorative. Journal of Dentistry , 34: 802–810.

7.       Fornes, T.D. & Paul, D.R. (2003). Formation and Properties of Nylon 6 Nanocomposite. Polimeros, 13:212-217. Available from: http://www.redalyc.org/pdf/470/47013403.pdf  [Accessed 21 February 2010]

8.       Zhu, J., Wang, T., Zhu, R., Ge, F., Wei, J., Yuan, P. & He, H.P. (2011). Novel Polymer/Surfactant Modified Montmorillonite Hybrids and the Implications for the Treatment of Hydrophobic Organic Compounds in Wastewaters. Applied Clay Science, 51: 317–322.

9.       Zhou, Q., He, H.P., Ray, L.F. & Yunfei, (2007). Adsorption of p-Nitrophenol on Mono-, Di-, and Trialkyl Surfactant-Intercalated Organoclays: A Comparative Study. Journal Physical Chemistry, 111: 7487–7493.

10.    Zaghouane-Boudiaf, H. & Boutahala, M. (2011). Preparation and Characterization of Organo-Montmorillonites. Application in Adsorption of the 2,4,5-Trichlorophenol from Aqueous Solution. Advanced Powder Technology,  22: 735–740.

11.    Moaaz, K.S., Komarneni, S., Cho, Y., Lim, T., Shahien, M.G., Khalil, A.A. & Abd El-Gaid, I.M. (2011). Organosilicas and Organo-Clay Minerals as Sorbents for Toluene. Applied Clay Science, 52: 184–189.

12.    Dowling, A.H. & Fleming, G.J.P. (2007). The Impact of Montmorillonite Clay Addition on the In Vitro Wear Resistance of a Glass-Ionomer Restorative. Journal of Dentistry, 35: 309–317. 

13.    Griffin, S.G. & Hill, R.G. (2000). Influence of glass composition on the Properties of Glass Polyalkenoate Cements. Part II: Influence of Phosphate Content. Biomaterials , 21: 400.

14.    Genebra, (1986). International Organization for Standardization. ISO7489. Dental glass polyalkenoate cements.

15.    Mallmann, A., Ataíde, J.C.O., Amoedo, R., Rocha, P.V. & Jacques, L.B. (2007). Compressive Strength of Glass Ionomer Cements using Different Specimen Dimensions. Brazillian Oral Restorative, 21: 204-208. Available from: http://dx.doi.org/10.1590/S1806-83242007000300003, [Accessed 18 july 2014]

16.    Matsuya, S., Maeda, T. & Ohta, M. (1996). IR and NMR Analyses of Hardening and Maturation of Glass-ionomer Cement. Journal of Dentistry Restorative, 75(12): 1920–1927.

17.    De Maeyer, E.A.P., Verbeeck, R.M.H. & Vercruysse, C.W.J. (1998). Reactivity of Fluoride-containing Calcium Aluminosilicate Glasses used in Dental Glass-ionomer Cements. Journal of Dentistry Restorative, 77 (12): 2005–2011.

18.    De Barra, E. & Hill, R.G. (1998). Influence of Alkali Metal Ions on the Fracture Properties of Glass Polyalkenoate (Ionomer) Cements. Biomaterials , 19: 495–502.

19.    Bujdák, J. and Slosiariková, H. (1992). The Reaction of Montmorillonite with Octadecylamine in Solid and Melted State. Applied Clay Science , 7: 263–269.

20.    Francis Thoo, V. W., Zainuddin, N., Matori, K. A. & Abdullah, S. A. (2013). Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production. Advances in Materials Science and Engineering, 2013: 1-6.

 

 

 

 

Previous                    Content                    Next