Malaysian Journal of Analytical Sciences Vol 17 No 3 (2013): 414 – 421

 

 

 

Synthesis of Rubber Seed Oil and Trimethylolpropane Based Biolubricant Base Stocks

 

(Penghasilan Stok Asas Biopelincir Berasaskan Minyak Biji Getah dan Trimetilolpropana)

 

Ainaatul Asmaa’ Ishak* and Jumat Salimon

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia.

 

*Corresponding author: aina_asmaa88@yahoo.com

 

 

Abstract

Esters derived through a chemical combination of vegetable oil with trimethylolpropane (TMP) have the potential for biolubricants usage due to their biodegradable, non toxic and environmentally friendly nature. The synthesis of ester was carried out via esterification of TMP with fatty acid rubber seed oil (FARSO) for 5 hours of reaction at 150 oC in the present of concentrated sulphuric acid (2% w/w). A Fourier Transform Infrared Resonance (FTIR) and a Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine both the presence of the ester carbonyl group (C=O) as well as the ester composition. The results showed that the esterification process has increased the oil flash point (310 oC), viscosity indices (283) and lower the pour point (-40 oC). RSOTMP ester produced has shown comparative physicochemical properties that plausible it to be used as good biolubricant base stock oil.

 

Keywords: ester, biolubricant; fatty acid rubber seed oil; RSOTMP ester

 

References

1.       Erhan, S. Z & Asadauskas, S. (2000). Lubricant basestoocks from vegetable oils. Industrial Crops and Products 11:277 – 282.

2.       Campanella, A., Rustoy, E., Baldessari, A & Baltanás, M. A. (2010). Lubricant from chemically modified vegetable oils. Bioresource Technology 101:245 – 254.

3.       Sharma, B. K., Adhwaryu, A., Liu, Z & Erhan, S. Z. (2006). Chemical modification of vegetable oils for lubricant applications. Journal of the American Oil Chemist’s Society 83:129 – 136.

4.       Noor Hafizah Arbain & Jumat Salimon. (2011). The effects of various catalyst on the esterification of Jatropha curcas oil based trimethylolpropane ester as biolubricant base stock. E-Journal of Chemistry. 8(S1):S33-S40.

5.       Gryglewicz, S., Piechocki, W & Gryglewicz, G. (2003). Preparation of polyol esters based on vegetable and animal fats. Bioresource Tehcnology 87:35 – 39.

6.       R., Fakhru’l-Razi, A., Ooi, T. L., Iyuke, S. E & Idris, A. (2003). Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. Journal of Oil Palm Research 15(2): 42 – 49.

7.       Eychenne, V., Mouloungui, Z & Gaset, A. (1998). Total and partial erucate of pentaerythritol. Infrared spectroscopy study of relationship between structure, reactivity and thermal properties. Journal of the  American Oil Chemist’s Society 75:293- 299.

8.       Nagendramma, P & Kaul, S. (2012). Development of ecofriendly/biodegradable lubricant: An overview. Renewable and Sustainable Energy Reviews 16:764 – 774.

9.       Kohashi. H. (1990). Application of fatty acid esters for lubricating oil. Proc. Of the World Conference on Oleochemicals into 21st Century. American Oil Chemists’ Society, Campaign, Illionis. 243-251.

10.    Gunam Resul, M. F. M., Mohd. Ghazi, T. I & Idris, A. (2012). Kinetic study of jatropha biolubricant from transesterification of jatropha curcas oil with trimethylolpropane: Effects of temperature. Industrial Crops and Products 38:87 – 92.

11.    Ikwuagwu, O. E., Ononogbu, I. C & Njoku, O. U. (2000). Production of biodiesel using rubber [Hevea brasiliensis (Kunth. Muell.)] seed oil. Industrial Crops and Products. 12:57 – 62.

12.    Ramadhas, A.S., Jayaraj, S & Muraleedharan. (2005). Biodiesel production from high FFA rubber seed oil. Fuel. 84:335 – 340.

13.    Aigbodion, A. I & Pillai, C. K. S. (2000). Preparation, analysis and applications of rubber seed oil and its derivatives in surface coatings. Progress in Organic Coatings. 38: 187 – 192.

14.    Ikhuoria, E. U., Okieimen, F. E., Obazee, E. O & Erhabor, T. (2011). Synthesis and characterization of styrenated rubber seed oil alkyd. African Journal of Biotechnology. 10(10):1913 – 1918.

15.    Egbuchunam, T. O., Balkӧse, D & Okieimen, F. E. (2007). Effect of zinc soaps of rubber seed oil (RSO) and/or epoxidised rubber seed oil (ERSO) on thermal stability of PVC plastigels. Polymer Degradation and Stability 92:1572 – 1582.

16.    Ebewele, R. O., Iyayi, A. F & Hymore, F. K. (2010). Consideration of the extraction process and potential technical applications of Nigerian rubber seed oil. International Journal of the Physical Sciences. 5(6):826 – 831.

17.    Jumat Salimon & Bashar Mudhaffar Abdullah. (2009). A study on the thermal properties and solid fat content of Malaysian rubber seed oil. The Malaysian Journal of Analytical Sciences 13(1):1 – 7.

18.    Okieimen, F. E., Bakare, O. I & Okieiman, C. O. (2002). Studies on the epoxidation of rubber seed oil. Industrial Crops and Products. 15:139-144.

19.    Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A & Goodwin Jr, J. G. 2005. Synthesis of biodiesel via acid catalysis. Industrial Engineering Chemistry Research. 44(14): 5353 – 5363.

20.    Adhvaryu, A., Erhan, S.Z., Liu, Z.S & Perez, J.M. (2000). Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochimica Acta 364: 87 – 97

21.    Pavia, D. L., Lampman, G. M. & Kriz, G. S. (2010). Introduction to Spectroscopy. 4th ed., United States: Thomson Learning, Inc.

22.    Robiah Yunus, Ooi, T.L., A. Fakhru’l-Razi & Shahnor Basri. (2002). Simple capillary column GC method analysis of palm oil-based polyol esters. Journal of the American Oil Chemists’ Society 79: 1075 – 1080.

23.    Stachowiak, G. W & Batchelor, A. W. (2005). Engineering Tribology. 3rd edition. Amsterdam: Elsevier Butterworth Heinemann.

24.    Cermak, S. C & Isbell, T. A. (2003). Synthesis and physical properties of estolide-based functional fluids. Industrial Crops and Products. 18:183 – 196.

 

 

 

Previous                    Content                    Next