Malaysian Journal of Analytical Sciences
Vol 17 No 3 (2013): 376 – 386
KAJIAN
AWAL PENGGUNAAN JARINGAN NEURAL TIRUAN (ANN) BAGI MENENTUKAN NILAI PEROKSIDA
TIGA MINYAK SAWIT KOMERSIL BERDASARKAN SPEKTRUM FTIR
(Preliminary
Study on Application of Artificial Neural Networks (ANN) for Determining the Peroxide
Value of Three Commercial Palm Oil Based FTIR Spectrum)
Azwan Mat Lazim1*,
Musa Ahmad1, Zuriati Zakaria1, M. Suzeren Jamil1
Suria Ramli1,
Faiz Zainuddin1, Mohd Nasir
Taib2, M. Nasir Mat Arip3
1Pusat Pengajian Sains Kimia &
Teknologi Makanan,
Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
2Fakulti Kejuruteraan Elektrik,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor
3Forest Products Division,
Forest
Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia
*Corresponding author: azwani79@ukm.my
Abstrak
Nilai peroksida
sering digunakan bagi menentukan kualiti minyak masak di mana nilai ini
mengukur sebatian peroksida dan kumpulan hidroperoksida yang terbentuk di
peringkat primer pengoksidaan lipid. Dalam kajian ini sebanyak tiga minyak
masak (sawit) komersil telah dipilih dan dilabelkan sebagai A, B dan C. Dua
keadaan berbeza telah diaplikasikan ke atas sampel-sampel minyak tersebut.
Pertama, sampel minyak telah didedahkan ke udara selama 3 bulan (minyak A)
manakala yang kedua sampel minyak telah digunakan untuk menggoreng berulang
kali (minyak B dan C). Bagi tujuan latihan ANN, sebanyak dua input telah
dipilih daripada spektrum FTIR yang diperoleh, iaitu nilai serapan pada panjang
gelombang 3444 cm-1 dan 3450 cm-1. Hasil kajian
menunjukkan arkitektur yang sesuai bagi jaringan ANN bagi menentukan nilai
peroksida bagi sampel minyak komersil adalah 2:20:1. Bagi ujian ramalan, nilai
peroksida yang diramalkan oleh ANN adalah hampir menyamai nilai peroksida yang
diperoleh daripada kaedah piawai. Keputusan telah menunjukkan bahawa ralat
purata yang rendah telah dperoleh, iaitu 0.48 apabila neuron terlindung yang
digunakan bagi arkitektur jaringan adalah 20 manakala bilangan ulangan latihan
adalah 300.
Kata
kunci: nilai peroksida, FTIR, ANN, minyak sawit
Abstract
Peroxide value
is one of the measurements that being used to determine the peroxide in oil
samples produce from the peroxide compund and hydroperoxide group at the
primary level of lipid oxidation. In this study, 3 commercial palm cooking oils
were selected and labeled as A, B and C. Two different conditions were applied
to the samples. First, the oil sample was exposed to the air for three months
(labeled as A) while samples B and C were used for frying for many times. Two
inputs from FTIR spectra (3444 cm-1 and 3450 cm-1) were
chosen for the ANN training. The suitable architecture for this training is
2:20:1. The prediction made by ANN was very accurate and compatible to the
result which obtained from the standard method. A low average error (0.48) was
obtained when the hidden neuron (20) and the epochs (300) were used.
Keyword: peroxide value, FTIR, ANN, palm oil
References
1.
Cornelius, J.A. (1969). Some technical
aspects influencing the quality of palm kernels. J. Sci. Agric. 17: 57-61.
2.
Choo, Y.M. (1999). Speciality products:
carotenoids. Dlm. Yusof, B. Jalani, B.S. & Chan, K.W. (pnyt). Advance in
oil palm research, hlm. 34-52. Kuala lumpur. PORIM
3.
Guillen, M.D & Cabo, N.(1997).
Infrared spectroscopy in the study of edible oils and fats, J. Sci. Food Agric. 75: 1-11.
4.
Moh, M.H. Che Man, Y.B. Badlishah, B.S.
Jinap, S. Saad. M.S. & Abdullah, W.J.W. (1999). Quantitative analysis of
palm carotene using FTIR and NIR spectroscopy. JAOCS. 76 (2): 249-254.
5.
Van de Voort, F.R, Ismail A.A., Sedman,
J., Dubois, J. & Nicodemo, T., (1994). The determination of peroxide value
by FTIR, J. Am. Oil Chem. Soc.
71:921-926
6.
Fukuzumi, K. & Kobayashi, E. (1972).
Quantitative determination of methyl octadecadienoate hydroperoxide by infrared
spectroscopy. J. Am. Oil Chem. Soc.
49: 162-165.
7.
Moh, M.H & Tang, T.S. (1999). A
review on the quantitative analysis of fats and oils using FTIR. PORIM Bulletin. 41:30-37.
8.
Hussain, S. Devi, K.S. Krishna,D. &
Reddy, P.J. (1996). Characterization and identification of edible oil blend and
prediction of the composition by ANN- A case study. Chemmometrics and Intelligent Lab. Syst. 35:117-126
9.
Nora Izma, A.A. (2003). Pembangunan
kaedah analisis menggunakan FTIR dan NIR dalam membandingkan minyak tulen dan
minyak campuran. Tesis Pusat pengajian Sains Kimia & Teknologi Makanan.
UKM, Bangi
10.
Basiron, Y. (2001). Global oils and fats
business: challenges in new millenium. Oil
Palm Industry Economic Journal. 11: 1-9.
11.
Wesolowski, M. & Suchacz, B. (2001).
Classification of rapeseed and soybean oils by use of unsupervised pattern
recognition method and neural networks.
J. Anal. Chem. 371: 323-330.
12.
Azwan Mat Lazim, Mohd Zuli Jaafar, Phang
Wei Shong & Suzereen Jamil (2013). Penentuan Kualiti Minyak Masak dan Lemak
Komersial Menggunakan Teknik Kimometik. The Malaysian Journal of Analytical
Sciences, Vol 17 No 1 (2013): 146 – 152
13.
PORIM
Test Method. (1995). Kuala Lumpur: PORIM
14.
Hendl, O., Howell, J., Lowery, J. &
William Jones (2001). A rapid and simple method for the determination of iodine
values using derivatives FTIR measurements, Anal.Chim.
Acta. 427:75-81
15.
Kamaliah Mahmood & Norsaadah A.R.
(1997). Kaedah spektroskopi dalam
pengenalpastian sebatian organik. Kuala lumpur: Penerbit Universiti Malaya.
16.
Che Man, Y.B., Moh, M.H. & Van de
Voort, F.R. 1999. Determination of free fatty acid in crude palm oil and
refined bleached deodorized palm olein using FTIR. Journal of American Oil Chemist Society. 76(4): 485-490.
17.
Kuntom, A. (1990). Oxidation and palm
oil. PORIM Bulletin. 20: 32-40.
18.
Sherwin, E.R. (1978). Oxidation and
antioxidantin fat and oil processing.
Journal of American Oil Chemist Society.. 55: 809-814.
19.
Fauziah, A. Razali, I. & Nor Aini,
S. (2000). Frying performance of palm olein and high oleic sunflower oil during
batch frying of potato crisps. Palm Oil
Development. 33: 2-7.
20.
Berger, K.G. (1982). Refined palm oil
quality as received. PORIM Bull. 4:
19-26.
21.
Svozil, D. Kvasnicka, V. &
Prospichal, J. (1997). Introduction to multilayer feed-forward neural network. Chemmom. Intell. Lab. Sys. 39: 42-62.
22.
Taib, M.N & Narayanaswamy, R. (1996). Multichannel calibration technique
for optical fibre chemical sensor using ANN. Sens. Actuators. B. 38-39:365.
23.
Miller, J.N & Miller, J.C. (2000). Stastistics and chemometrics for analytical
chemistry. Ed. Ke-4. England. Perason Education Ltd.
24.
March, J.G., Simonet, B.M. & Grases,
F. (1999). Determination of phytic acid by catalytic fluorimetric. Analyst. 124:897-900.