The Malaysian Journal of Analytical Sciences Vol 16 No 3 (2012): 283 – 289

 

 

EFFECT OF DIMETHYL CARBONATE PLASTICIZER ON IONIC CONDUCTIVITY OF METHYL CELLULOSE-BASED POLYMER ELECTROLYTES

 

(Pengaruh Pemplastik Dimetil Karbonat ke atas Kekonduksian Ionik Elektrolit Polimer Berasaskan Metil Selulos)

 

M.F. Mustafa1, N.I.M. Ridwan1, F.F. Hatta1,  M.Z.A. Yahya2*

 

1Centre of Foundation Studies,

UniversitiTeknologi MARA, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: mfiza@salam.uitm.edu.my

 

 

Abstract

Influences of dimethyl carbonate (DMC) plasticizer on ionic conductivity, dielectric permittivity and electrical modulus formalism of methyl cellulose (MC)-based polymer electrolytes have been studied. The room temperature electrical conductivity as measured by impedance spectroscopy shows that a methyl cellulose film has a conductivity of ~10-10 S cm-1. In this study, other than KOH ionic dopant, DMC plasticizer is also added to the polymer with the aim of enhancing the electrical conductivity of the polymer. The highest room temperature conductivity of the plasticized sample is ~10 -5 S cm-1. The plot of log σ versus 103/T for the highest conducting sample obeys Arrhenius rule indicating that the conductivity occurs by thermally activated mechanism.

 

Keywords: methylcellulose, ionic conductivity, dimethyl carbonate, Arrhenius rule

 

References

1.     A.Bhide, K.Hariharan, Ionic transport studies on (PEO) 6: NaPO3 polymer electrolyte plasticized with PEG400, vol.43 (2007) 4253-4270.

2.     N.E.A.Shuhaimi, L.P.Teo, S.R.Majid, A.K.Arof, Transport studies of NH4NO3 doped methyl cellulose electrolyte, Synthetic Metals 160 (2010) 1040-1044.

3.     A.A.Mohamad, A.K.Arof, Plasticized alkaline solid polymer electrolyte system, Materials Letters 61 (2007) 3096-3099.

4.     A.M.M.Ali, M.Z.A.Yahya, H.Bahron, R.H.Y.Subban, M.K.Harun, I.Atan, Impedance studies on plasticized PMMA-LiX [X: CF3SO3, N(CF3SO2)2] polymer electrolytes, Materials Letter 61 (2007) 2026-2029.

5.     S.R.Majid, N.H.Idris, M.F.Hassan, T.Winie, A.S.A. Khiar and A.K.Arof, Transport studies on filler doped chitosan based polymer electrolyte, Ionics 11 (2005) 451-455.

6.     DhilipK.Pradhan, R.N.P.Chaudhary, B.K.Samontaray, Effect of plasticizer on structural and electrical properties of polymer nanocomposite electrolytes, International Journal of Elelctrochemical Science, vol.2 (2007) 861-871.

7.     S.Ramesh, M.F.Chai, Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes, Materials Science and Engineering B 139 (2007) 240-245.

8.     DhilipK.Pradhan, R.N.P.Chaudhary, B.K.Samontaray, Studies of dielectric relaxation and a.c conductivity behavior of plasticized polymer nanocomposite electrolytes, vol.3 (2008) 597-608.

9.     DhilipK.Pradhan, R.N.P.Chaudhary, B.K.Samontaray, studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes, vol.2 (2008) 630-638.

10.  S.Ramesh, M.F.Chai, Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes, Materials Science and Engineering B 139 (2007) 240-245.

 

Previous                    Content                    Next